991 resultados para Raphanus sativus L
Resumo:
The biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (ODAP) the Lathyrus sativus neurotoxin has been found to follow the scheme depicted below: {A figure is presented}. The first reaction is catalysed by oxalyl-CoA synthetase which has properties similar to that of the enzyme in peas. The second reaction is catalysed by another enzyme which is specific to L. sativus and is designated as oxalyl-CoA-α,β-diaminopropionic acid oxalyl transferase. The enzymes have been purified by about 60-fold and their properties studied. A partial resolution of the two enzyme activities has been achieved using CM-sephadex columns.
Resumo:
A study was undertaken in 2004 and 2005 to characterize pathogens associated with damping-off of greenhouse-grown cucumber seedlings in 13 districts in Oman. Identification of Pythium to the species level was based on sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Of the 98 Pythium isolates collected during the survey, Pythium aphanidermatum, P. spinosum, P. splendens and P. oligandrum accounted for 76%, 22%, 1% and 1%, respectively. Pythium aphanidermatum was isolated from all of the districts, while P. spinosum was isolated from seven districts. Pathogenicity tests showed inter- and intraspecific variation in aggressiveness between Pythium species. Pythium aphanidermatum, P. spinosum and P. splendens were found to be highly aggressive at 25°C. However, the aggressiveness of P. spinosum decreased when the temperature was raised to 30°C, which was found to correspond to the lower frequency of isolation of P. spinosum in the warmer seasons, compared to the cooler time of the year. Pythium aphanidermatum exhibited limited intraspecific variation in the sequences of the ITS region of the rDNA and showed 100% similarity to the corresponding P. aphanidermatum sequences from GenBank. The ITS sequence data, as well as morphological characteristics of P. spinosum isolates, showed a high level of similarity within and between P. spinosum and P. kunmingense, and suggested that the two species were synonymous. This study represents the first report of P. spinosum, P. splendens and P. oligandrum in Oman.
Resumo:
A transamidinase was purified 463-fold from Lathyrus sativus seedlings by affinity chromatography on homoarginine--Sepharose. The enzyme exhibited a wide substrate specificity, and catalysed the reversible transfer of the amidino groups from donors such as arginine, homoarginine and canavanine to acceptors such as lysine, putrescine, agmatine, cadaverine and hydroxylamine. The enzyme could not be detected in the seeds, and attained the highest specific activity in the embryo axis on day 10 after seed germination. Its thiol nature was established by strong inhibition by several thiol blockers and thiol compounds in the presence of ferricyanide. In the absence of an exogenous acceptor, it exhibited weak hydrolytic activity towards arginine. It had apparent mol.wt. 210000, and exhibited Michaelis--Menten kinetics with Km 3.0 mM for arginine. Ornithine competitively inhibited the enzyme, with Ki 1.0 mM in the arginine--hydroxylamine amidino-transfer reaction. Conversion experiments with labelled compounds suggest that the enzyme is involved in homoarginine catabolism during the development of plant embryo to give rise to important amino acids and amine metabolites. Presumptive evidence is also provided for its involvement in the biosynthesis of the guanidino amino acid during seed development. The natural occurrence of arcain in L. sativus and mediation of its synthesis in vitro from agmatine by the transamidinase are demonstrated.
Resumo:
An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Common root rot (CRR) and spot blotch, caused by Cochliobolus sativus (Ito and Kurib.) Drechsl. ex Dast., are important diseases of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) worldwide. However, the population biology of C. sativus is still poorly understood. In this study, the genetic structure of three C. sativus populations, consisting of isolates sampled respectively from barley leaves (BL), barley roots (BR) and wheat roots (WR) in North Dakota, was analysed with amplified fragment length polymorphism (AFLP) markers. A total of 127 AFLP loci were generated among 208 C. sativus isolates analysed with three primer combinations. Gene diversity (H = 0.277-0.335) were high in all three populations. Genetic variation among C. sativus individuals within population accounted for 74%, whereas 26% of the genetic variation was explained among populations. Genetic differentiation was high (empty set PT = 0.261, corrected G ''(st)= 0.39), whereas gene flow (Nm) ranged from 1.27 to 1.56 among the three populations analysed. The multilocus linkage disequilibrium (LD) ((r) over bard = 0.0760.117) was moderate in C. sativus populations. Cluster analyses indicate that C. sativus populations differentiated according to the hosts (barley and wheat) and tissues (root and leaf) although generalists also exist in North Dakota. Crop breeding may benefit from combining genes for resistance against both specialists and generalists of C. sativus.
Resumo:
Arginine decarboxylase which makes its appearance in Lathyrus sativus seedlings after 24 h of seed germination reaches its highest level around 5–7 days, the cotyledons containing about 60% of the total activity in the seedlings at day 5. The cytosol enzyme was purified 977-fold from whole seedlings by steps involving manganese chloride treatment, ammonium sulphate and acetone fractionations, positive adsorption on alumina C-γ gel, DEAE-Sephadex chromatography followed by preparative disc gel electrophoresis. The enzyme was shown to be homogeneous by electrophoretic and immunological criteria, had a molecular weight of 220000 and appears to be a hexamer with identical subunits. The optimal pH and temperature for the enzyme activity were 8.5 and 45 °C respectively. The enzyme follows typical Michaelis-Menten kinetics with a Km value of 1.73 mM for arginine. Though Mn2+ at lower concentrations stimulated the enzyme activity, there was no dependence of the enzyme on any metal for the activity. The arginine decarboxylase of L. sativus is a sulfhydryl enzyme. The data on co-factor requirement, inhibition by carbonyl reagents, reducing agents and pyridoxal phosphate inhibitors, and a partial reversal by pyridoxal phosphate of inhibition by pyridoxal · HCl suggests that pyridoxal 5'-phosphate is involved as a co-factor for the enzyme. The enzyme activity was inhibited competitively by various amines including the product agmatine. Highest inhibition was obtained with spermine and arcain. The substrate analogue, l-canavanine, homologue l-homoarginine and other basic amino acids like l-lysine and l-ornithine inhibited the enzyme activity competitively, homoarginine being the most effective in this respect.
Resumo:
THE unusual amino acid beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (ODAP), isolated from the seeds of Lathyrus sativus is a potent neurotoxin1−3. It produces biochemical changes in the brain typical of an excitant amino acid and is implicated in the aetiology of human neurolathyrism caused by eating the seeds of L. sativus 4−6. It may act as a glutamate antagonist: ODAP inhibits glutamate oxidation7 possibly by inhibiting glutamate uptake in bovine brain mitochondria; it also acts as a competitive inhibitor of glutamate uptake in certain strains of yeast8, and a similar process might occur at the synaptic level. Any effect of ODAP on glutamate uptake at synapses is significant in view of the neurotransmitter function of glutamate, which seems to be neuroexcitory as well as neurotoxic9−12. But Balcar and Johnston13 have shown with rat brain slices that ODAP does not inhibit the glutamate uptake by the high affinity system.
Resumo:
The seeds of Lathyrus sativus contain the unusual amino acid homoarginine. The possible breakdown of homoarginine to lysine and urea has been investigated with enzyme extracts prepared from the seedlings of L. sativus. The results indicate that there is no separate homoarginase enzyme but that the arginase present has about 5 per cent activity towards Image -homoarginine as compared to that obtained with Image -arginine. The enzyme does not show an absolute dependence on Mn2+ for activity and maximal activation of the enzyme has been realized with Fe3+. It is concluded that the breakdown of homoarginine through the urea cycle may only represent a minor pathway for the catabolism of this compound in this plant.
Resumo:
Este trabalho foi realizado com o objetivo de quantificar as interações competitivas e os índices de competitividade entre plantas de triticale e nabiça. A metodologia utilizada foi a de um experimento em monocultura, que variou de 25 a 500 plantas m-2 para determinar o valor a partir do qual a produção se torna independente do aumento da densidade para cada espécie, e um experimento substitutivo, com população total de 300 plantas m-2 e sete proporções de nabiça: triticale (0:300, 50:250, 100:200, 150:150, 200:100, 250:50 e 300:0), sendo conduzidos em delineamento experimental de blocos casualizados, com cinco repetições. Os resultados foram analisados pelo método convencional de análise de experimentos substitutivos e pelo método da produção recíproca total e por planta. Os índices calculados, a partir da massa seca das plantas, indicaram o triticale como competidor superior à nabiça.
Resumo:
Authors report trial with bergapten using homeopathic preparations and the protection of cucumber seedlings (Cucumis sativus) against intoxications by the same substance and assess the positive results obtained.