933 resultados para REACTIVE MAGNETRON SPUTTERING
Resumo:
The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
El trabajo que se llevará a cabo se basa en el desarrollo de nuevos materiales que sean capaces de resistir las condiciones extremas a las que estarían expuestos en el interior de un reactor de fusión nuclear, como son los altos choques térmicos y los altos flujos iónicos. Actualmente se está investigando en el potencial del wolframio nanoestructurado como material de primera pared (en inglés PFM: Plasma Facing Material). La principal ventaja de éste frente al wolframio masivo radica en su gran densidad de fronteras de grano que hacen que el material sea más resistente a la irradiación. El objetivo de este trabajo será la búsqueda de las condiciones óptimas para la fabricación de recubrimientos de wolframio nanoestructurado mediante la técnica de pulverización catódica ("sputtering") en diferentes configuraciones, continuo ("Direct Current Magnetron Sputtering" o DCMS) y/o pulsado ("High Power Impulse Magnetron Sputtering" o HiPIMS) y caracterizar sus propiedades como PFM mediante perfilometría, microscopía óptica, microscopía electrónica de barrido ("Scanning Electron Microscope" o SEM) y difracción de rayos X ("X-Ray Diffraction" o XRD). A su vez, se realizará un ensayo de implantación con un plasma pulsado de He para analizar los efectos de la irradiación en uno de los recubrimientos. Abstract: The work that will be carried out is based on the development of new materials capable of withstanding the extreme conditions that they will have to face inside a nuclear fusion reactor, such as high thermal loads and high ion fluxes. Currently, nanostructured tungsten potential is being investigated as a plasma facing material (PFM). The main advantage over coarse grain tungsten is its high density of grain boundaries which make the material more resistant to irradiation. The project´s main objective will be the search of the optimal conditions that will allow us to fabricate nanostructured tungsten thin films by using the sputtering technique in different configurations, such as DCMS (Direct Current Magnetron Sputtering) and/or HiPIMS (High Power Impulse Magetron Sputtering) and characterize their properties as a PFM by perfilometry, optical microscopy, SEM (Scanning Electron Microcopy) and XRD (X-Ray Diffracion) analysis. Moreover, an implantation test with a He pulsed plasma will be carried out to analyze the effects of irradiation on one of the coatings.
Resumo:
Nanostructured Cu/304 stainless steel (SS) multilayers were prepared by magnetron sputtering. 304SS has a face-centered-cubic (fcc) structure in bulk. However, in the Cu/304SS multilayers, the 304SS layers exhibit the fcc structure for layer thickness of =5 nm in epitaxy with the neighboring fcc Cu. For 304SS layer thickness larger than 5 nm, body-centered-cubic (bcc) 304SS grains grow on top of the initial 5 nm fcc SS with the Kurdjumov-Sachs orientation relationship between bcc and fcc SS grains. The maximum hardness of Cu/304SS multilayers is about 5.5 GPa (factor of two enhancement compared to rule-of-mixtures hardness) at a layer thickness of 5 nm. Below 5 nm, hardness decreases with decreasing layer thickness. The peak hardness of fcc/fcc Cu/304SS multilayer is greater than that of Cu/Ni, even though the lattice-parameter mismatch between Cu and Ni is five times greater than that between Cu and 304SS. This result may primarily be attributed to the higher interface barrier stress for single-dislocation transmission across the {111} twinned interfaces in Cu/304SS as compared to the {100} interfaces in Cu/Ni.
Resumo:
Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.
Resumo:
The femtosecond laser modification of refractive index in amorphous Al2O3:Nd thin film prepared by rf magnetron sputtering is investigated. Modifications of the refractive index in a sample with a single Al2O3:Nd layer and in a sample composed of the Al2O3:Nd layer and SiO2 layer on the top were compared. Advantages arising from addition of the SiO2 layer are shown. The film was patterned in order to form an active waveguide. Waveguide loss and mode composition were investigated experimentally and theoretically. Spectrum and kinetics of luminescence in the region of 1.06 μm were measured.
Resumo:
As time advances, man has been able to control technology in finer and finer detail. The microelectronics era is an example of this, with control down to the micrometer. Experts agree that we may be entering a new era, controlling technology down to the nanometer. One aspect of such control is making materials in the nanometer range, i.e. nanoparticles. For this purpose, a new magnetron-sputtering gun, inert gas condensation, nanoparticle source has been designed, built, and tested. ^ Films made from cobalt, nickel, tantalum, molybdenum, chromium, and aluminum have been investigated. Transmission Electron Microscope measurements done at the University of Illinois confirm the thin films are nanostructured. This was also confirmed by Atomic Force Microscope measurements made at the F.I.U. Thin Film Laboratory. ^ Composition, optical and magnetic properties have been measured. In most cases, unique properties have been found that differ significantly from bulk properties. Rutherford Backscattering measurements done at the University of Illinois determined significant percentages of oxygen and carbon in the samples, possibly due to interactions with air. Because of this, optical properties are a composite of oxide, metal, and void properties. Magnetic materials were determined to have spin-glass properties below the irreversibility temperature and superparamagnetic properties above it. Indications of possible future uses for these nanostructured materials are discussed. ^
Resumo:
Series Micro-Electro-Mechanical System (MEMS) switches based on superconductor are utilized to switch between two bandpass hairpin filters with bandwidths of 365 MHz and nominal center frequencies of 2.1 GHz and 2.6 GHz. This was accomplished with 4 switches actuated in pairs, one pair at a time. When one pair was actuated the first bandpass filter was coupled to the input and output ports. When the other pair was actuated the second bandpass filter was coupled to the input and output ports. The device is made of a YBa2Cu 3O7 thin film deposited on a 20 mm x 20 mm LaAlO3 substrate by pulsed laser deposition. BaTiO3 deposited by RF magnetron sputtering in utilized as the insulation layer at the switching points of contact. These results obtained assured great performance showing a switchable device at 68 V with temperature of 40 K for the 2.1 GHz filter and 75 V with temperature of 30 K for the 2.6 GHz hairpin filter. ^
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
Thin films of Co2FeAl (CFA) and trilayers with CFA/M/CFA, where M is Au or Ag, produced by magnetron sputtering onto glass and oriented (MgO (100)) substrates were investigated. The structural, magnetic static and magnetic dynamics properties were analyzed by distinct experimental techniques. Through X-ray diffraction was observed an A2 phase for the samples (completely disordered), where the atoms are randomly located in the lattice. The static magnetic behavior, in some samples, reveal a plateau behavior generated by a biphasic system. The magnetoimpedance measurements were performed by varying the angle between the external magnetic field and current with respect of anisotropy direction. For this reason, the MI results show a asymmetric magnetoimpedance (AMI) behavior. For the single and trilayers samples with 500 nm-thick, the AMI effect is more evident in comparison with samples with 1000 nm-thick. Therefore, in this work was stablished a route to produce Heusler alloy samples with A2 phase in thin film geometry onto amorphous and oriented substrates, and due to structural disorder was possible to study the hysteretic and MI asymmetric effects.
Resumo:
Magnetic multilayers are the support for the production of spintronic devices, representing great possibilities for miniaturized electronics industry. having the control to produce devices as well as their physical properties from simple multilayer films to highly complex at the atomic scale is a fundamental need for progress in this area, in recent years has highlighted the production of organic and flexible spintronic devices. Because of this trend, the objective of this work was to produce magnetic multilayers deposited on flexible substrate using magnetron sputtering dc technique. Three sets of samples were prepared. The first set composed of the trilayer type CoFe=Cu(t)=CoFe with different thickness of the metallic spacer. The second set consists of two multilayer subgroups, CoFe=Cu in the presence of IrMn layer as a buffer and the next multilayer as cap layer. The third set consisting of non-magnetostrictive multilayer permalloy (Py=Ta and Py=Ag) on flexible substrate and glass. The magnetic properties, were investigated by magnetometry measurements, ferromagnetic resonance and magnetoimpedance (MI), measurements were carried out at room temperature with the magnetic field always applied on the sample plane. For structural analysis, the diffraction X-ray was used. The results of the trilayer showed a high uniaxial anisotropy field for the sample with a spacer of 4.2 nm. For the multilayer in the presence of IrMn layer as the buffer, the study of static and dynamic magnetic properties showed isotropic behavior. For the multilayer in the presence of IrMn layer as a cap, the results of static magnetic properties of the magnetic behavior exhibited a spin valve structure type. However there was a disagreement with results of ferromagnetic resonance measurements, which was justified by the contribution of the unstable and stable grain to the rotatable anisotropy and Exchange bias in ferromagneticantiferromagnetic interface. The third serie of samples showed similar results behavior for the MI Ag multilayers spacer in both substrates. There are also significant MI changes with the Ta spacer, possible associated with the compressive stress on the flexible substrate sample.
Resumo:
La conversione di energia solare in energia elettrica può avvenire in diversi modi. Un problema dell’energia ottenuta tramite questa conversione è la difficoltà di immagazzinarla efficientemente per poterla utilizzare in un momento successivo. Un modo per ovviare questo problema è convertire l’energia solare in energia chimica, tramite la creazione di combustibili fotoprodotti. Alcuni combustibili di questo tipo sono l’idrogeno e gli idrocarburi ad alta densità energetica, il primo ottenuto tramite l’elettrolisi dell’acqua e i secondi tramite l’elettrolisi dell’anidride carbonica. Un metodo per compiere tali elettrolisi è l’utilizzo di celle fotoelettrochimiche, ovvero dei dispositivi che tramite l’energia solare assorbita avviano l’elettrolisi della soluzione acquosa che si decompone in due regioni separate della cella. L’efficienza di una cella fotoelettrochimica dipende fortemente dall’efficienza dei fotoelettrodi che la compongono, per questo si indagano nuovi materiali che possano garantire prestazioni migliori a costi bassi. Questa tesi nello specifico ha lo scopo di illustrare il processo di fabbricazione di fotocatodi a base di semiconduttori tramite sputtering magnetico. In particolare vengono analizzati 4 campioni strutturati con diversi materiali. I materiali utilizzati sono: Seleniuro di Rame Indio Gallio CIGS, Solfuro di Cadmio CdS, Ossido di Zinco drogato con Alluminio AZO ed Ossido di Titanio TiO2.
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiO(x)) dielectric layer, deposited with different oxygen partial pressure (30,35 and 40%) and annealed at 550, 750 and 1000 degrees C, were fabricated and characterized. Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiO(x) films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of - 1 V, as low as 1 nA/cm(2) for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers. (C) 2009 Elsevier B.V. All rights reserved.