886 resultados para Quantitative structure-property relationship
Resumo:
Retinoids are known to inhibit proliferation of and induce terminal differentiation of many normal and transformed cells. It has been postulated that retinoids exert their effect by altering gene expression. HL-60 cells and macrophages both respond to retinoic acid action by the rapid induction of the enzyme tissue transglutaminase. The induction has been shown to be due to increased transcription of the transglutaminase gene. The first part of the dissertation studied the structure-function relationship of retinoid-regulated transglutaminase induction, differentiation and proliferation in HL-60 cells using retinoid analogs. The results indicated strict structural constraints and a strong structure-function correlation between transglutaminase induction and differentiation; those retinoids that induced transglutaminase also induced differentiation, those analogs that did not induce transglutaminase could not induce differentiation. The ability of the retinoids to induce transglutaminase in HL-60 cells was paralleled in macrophages. However, the antiproliferative effect of the retinoids displayed less stringent structural constraints than their differentiation- and transglutaminase-inducing properties. Specifically all the retinoids were able to inhibit proliferation to varying extents. It is concluded that the induction of transglutaminase and of differentiation by retinoids is mediated by receptors. While receptor mediation cannot be entirely ruled out, with the current data no definitive statement can be made about the antiproliferative activity of retinoids. Also, the concordance in the ability of the retinoids to induce transglutaminase and the ability to induce differentiation of HL-60 cells suggests that the former is an early response of the cells to retinoids and differentiation a later consequence on the same pathway. Using the induction of transglutaminase as an index of the direct, or primary, effect of retinoids on gene expression, the second part of the dissertation investigates, by 2D gel electrophoresis, the alteration in the rates of synthesis of other proteins in macrophages and HL-60 cells in response to short incubations with retinoic acid. Any changes in parallel with transglutaminase were taken to indicate proteins directly under the control of retinoic acid. It is concluded that retinoic acid regulates the expression of a circumscribed set of genes in a cell-specific manner. The results support the hypothesis that retinoids exert their multiple effects on myeloid cells, in part, by receptor-mediated alternations in gene expression. ^
Resumo:
The Asian economy is expected to realise favourable growth during the first half of this century, but there is no guarantee. There is a discussion about a ‘middle-income trap’, which refers to a country that has realised rapid growth to become a middle-income country but is unable to grow further. A middle-income trap could occur not only if there is a delay in shifting the economy toward a productivity-driven structure, but also if there is a worsening of income distribution.We consider this in line with the theories of development economics and through a quantitative analysis. The relationship between income inequality and the trap can be explained by the Kuznets hypothesis and the basic-needs approach. Our quantitative analysis supports the Kuznets hypothesis, and indicates that,although a low-income country can accelerate its economic growth with the worsening of income distribution as an engine, a middle income country would experience a decreasing growth rate if it fails to narrow the income gap between the top and bottom income groups. The results also show that the basic-needs approach is also applicable in practice, and imply that the improvement of access to secondary education is important. A sensitivity analysis for three Asian upper-middle-income countries(China, Malaysia and Thailand) also shows that the situation related to a middle-income trap is worse than average in China and Malaysia. These two countries, according to the result of the sensitivity analysis, should urgently improve access to secondary education and should implement income redistribution measures to develop high-tech industries, before their demographic dividends expire. Income redistribution includes the narrowing of rural urban income disparities, benefits to low-income individuals, direct income transfers, vouchers or free provision of education and health-care, and so on, but none of these are simple to implement.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.
Resumo:
Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Salt formation has extensively been studied as a strategy to improve drug solubility but it has not been explored as a strategy to improve mechanical properties. A better understanding of which factors of the solid state can have an influence in the mechanical properties of pharmaceutical powders can help to optimise and reduce cost of tablet manufacturing. The aim of this study was to form different series of amine salts of flurbiprofen, gemfibrozil and diclofenac and to establish predictive relationships between architectural characteristics and physicochemical and mechanical properties of the salts. For this purpose, three different carboxylic acid drugs were selected: flurbiprofen, gemfibrozil and diclofenac, similar in size but varying in flexibility and shape and three different series of counterions were also chosen: one with increasing bulk and no hydroxyl groups to limit the hydrogen bonding potential; a second one with increasing number of hydroxyl groups and finally a third series, related to the latter in number of hydroxyl groups but with different molecular shape and flexibility. Physico-chemical characterization was performed (DSC, TGA, solubility, intrinsic dissolution rate, particle size, true density) and mechanical properties measured using a compaction replicator. Strained molecular conformations produce weaker compacts as they have higher energy than preferred conformations that usually lie close to energy minimums and oppose plastic deformation. It was observed that slip planes, which correspond to regions of weakest interaction between the planes, were associated with improved plasticity and stronger compacts. Apart from hydrogen bonds, profuse van der Waals forces can result in ineffective slip planes. Salts displaying two-dimensional densely hydrogen bonded layers produced stronger compacts than salts showing one-dimensional networks of non-bonded columns, probably by reducing the attachment energy between layers. When hydrogen bonds are created intramolecularly, it is possible that the mechanical properties are compromised as they do not contribute so much to create twodimensional densely bonded layers and they can force molecules into strained conformations. Some types of hydrogen bonding network may be associated with improved mechanical properties, such as type II, or R (10) 3 4 using graph-set notation, versus type III, or R (12) 4 8 , columns. This work clearly demonstrates the potential of investigating crystal structure-mechanical property relationship in pharmaceutical materials.
Resumo:
Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient P (commonly expressed in logarithm form: logP), is useful for screening out unsuitable molecules and also for the development of predictive Quantitative Structure-Activity Relationships (QSARs). In this paper we develop a new approach to the prediction of LogP values for peptides based on an empirical relationship between global molecular properties and measured physical properties. Our method was successful in terms of peptide prediction (total r2 = 0.641). The final model consisted of 5 physicochemical descriptors (molecular weight, number of single bonds, 2D-VDW volume, 2D-VSA hydrophobic and 2D-VSA polar). The approach is peptide specific and its predictive accuracy was high. Overall, 67% of the peptides were able to be predicted within +/-0.5 log units from the experimental values. Our method thus represents a novel prediction method with proven predictive ability.
Resumo:
Crystallization and determination of the high resolution three-dimensional structure of the β2-adrenergic receptor in 2007 was followed by structure elucidation of a number of other receptors, including those for neurotensin and glucagon. These major advances foster the understanding of structure-activity relationship of these receptors and structure-based rational design of new ligands having more predictable activity. At present, structure determination of gut hormone receptors in complex with their ligands (natural, synthetic) and interacting signalling proteins, for example, G-proteins, arrestins, represents a challenge which promises to revolutionize gut hormone endocrinonology.
Resumo:
In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
β-Carotene, zeaxanthin, lutein, β-cryptoxanthin, and lycopene are liposoluble pigments widely distributed in vegetables and fruits and, after ingestion, these compounds are usually detected in human blood plasma. In this study, we evaluated their potential to inhibit hemolysis of human erythrocytes, as mediated by the toxicity of peroxyl radicals (ROO•). Thus, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as ROO• generator and the hemolysis assay was carried out in experimental conditions optimized by response surface methodology, and successfully adapted to microplate assay. The optimized conditions were verified at 30 × 10(6) cells/mL, 17 mM of AAPH for 3 h, at which 48 ± 5% of hemolysis was achieved in freshly isolated erythrocytes. Among the tested carotenoids, lycopene (IC(50) = 0.24 ± 0.05 μM) was the most efficient to prevent the hemolysis, followed by β-carotene (0.32 ± 0.02 μM), lutein (0.38 ± 0.02 μM), and zeaxanthin (0.43 ± 0.02 μM). These carotenoids were at least 5 times more effective than quercetin, trolox, and ascorbic acid (positive controls). β-Cryptoxanthin did not present any erythroprotective effect, but rather induced a hemolytic effect at the highest tested concentration (3 μM). These results suggest that selected carotenoids may have potential to act as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the treatment of major parasitic infectious diseases, with special emphasis on its role in the discovery of new drugs against schistosomiasis, a tropical disease that affects millions of people worldwide. In the present work, we have determined the inhibitory potency and developed descriptor- and fragment-based quantitative structure-activity relationships (QSAR) for a series of 9-deazaguanine analogs as inhibitors of SmPNP. Significant statistical parameters (descriptor-based model: r² = 0.79, q² = 0.62, r²pred = 0.52; and fragment-based model: r² = 0.95, q² = 0.81, r²pred = 0.80) were obtained, indicating the potential of the models for untested compounds. The fragment-based model was then used to predict the inhibitory potency of a test set of compounds, and the predicted values are in good agreement with the experimental results
Resumo:
This paper describes 2D-QSAR and 3D-QSAR studies against Candida albicans and Cryptococcus neofarmans for a set of 20 bisbenzamidines. In the studies of 2D-QSAR with C. albicans it was obtained a correlation between log MIC-1 and lipolo component-Z (r² = 0.68; Q² = 0.51). In the case of C. neofarmans a correlation between log MIC-1 and lipolo component-Z and of Balaban index (r² = 0.85; Q² = 0.6) was obtained. 3D-QSAR studies using CoMFA showed that the steric fields contributed more to the predicted activities for Candida albicans (94.9%) and Cryptococcus neofarmans (97.9%).
Resumo:
Giant extracellular hemoglobins are considered the summit of complexity in systems that carry oxygen, constituting an extraordinary model system to the study of hemoproteins. This class includes the hemoglobin of the annelid Glossoscolex paulistus that presents high cooperativity, great oligomeric and redox stabilities and ability of oligomeric reassociation. These properties have motivated evaluations about its utilization as prototype of artificial blood and biosensor. Kinetic studies involving autoxidation and detailed spectroscopic characterizations of its ferrous and ferric species have propitiated information about the structure-activity relationship of this macromolecule. The present review analyzes several biochemical issues, evaluating the state-of-art of this subject.
Resumo:
In this study, the influence of the processing conditions and the addition of trans-polyoctenylene rubber (TOR) on Mooney viscosity, tensile properties, hardness, tearing resistance, and resilience of natural rubber/styrene-butadiene rubber blends was investigated. The results obtained are explained in light of dynamic mechanical and morphological analyses. Increasing processing time produced a finer blend morphology, which resulted in an improvement in the mechanical properties. The addition of TOR involved an increase in hardness, a decrease in tear resistance, and no effect on the resilience. It resulted in a large decrease in the Mooney viscosity and a slight decrease in the tensile properties if the components of the compounds were not properly mixed. The results indicate that TOR acted more as a plasticizer than a compatibilizer. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.