979 resultados para Problema de momento trigonométrico


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con base en el enfoque de resolución de problemas, se describe una experiencia vivida por un grupo de maestros en la que se parte de un problema que es resuelto sin mayor dificultad, pero que, al realizar la mirada retrospectiva, da lugar a un nuevo problema que invita a los participantes a un viaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta el resultado obtenido del análisis de un proceso de razonamiento inductivo desarrollado por 12 estudiantes de secundaria en un contexto de resolución de problemas. Se plantea un problema, en el transcurso de una entrevista, que consiste en determinar el número máximo de regiones que se obtienen al trazar rectas sobre un plano. Durante la resolución del problema los estudiantes, y a través del dialogo con el entrevistador, han de explicar y justificar sus decisiones. Centrándonos en el trabajo de Pólya y en otras investigaciones previas relacionadas sobre este tema, se define un sistema de categorías mediante las cuales se organizan los datos para su análisis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo enmarca y describe algunas interacciones entre alumnos/ investigador/docente generadas durante el desarrollo de una investigación en didáctica de la matemática. Toda investigación supone la toma de decisiones que atañen a diversos aspectos relacionados con el problema, los objetivos de la investigación y los resultados que se obtienen durante su desarrollo. Se pondrá de manifiesto que estas decisiones, que definen en buena medida la coherencia de la investigación, deben tomarse en todas las etapas de la investigación, desde su inicio hasta el momento de escribir la memoria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los sistemas de representación y la resolución de problemas matemáticos es un tema de interés para la Didáctica de la Matemática porque se pone en juego una serie de conocimientos, conceptos, modelos, métodos, estrategias, experiencias y relaciones que implican un pensamiento elaborado complejo que consigue que, a partir de unos datos conocidos, encontrar otros datos desconocidos. En este estudio, describimos la actuación de resolutores cuando resuelven un problema matemático, de manera espontánea con lápiz y papel. Cuando algún estudiante resuelve un problema mediante lápiz y papel deja la huella de los pasos seguidos en su resolución. Esos pasos están cargados de información importante que el resolutor presenta haciendo uso de algún sistema de representación que le es conocido y le permite comunicar su pensamiento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adoptaremos aquí el enfoque de resolución de problemas en la perspectiva de Charnay, este autor plantea unos momentos en el desarrollo de la situación problemática por parte del estudiante, denominados Formulación, Argumentación, Validación e Institucionalización del conocimiento matemático. En nuestra interpretación esto implica que, el profesor pone en juego distintos tipos de conocimientos vinculados a la cognición matemática, la planeación y diseño de actividades, la gestión en el aula y la evaluación por competencias de manera que en la transposición didáctica se genere el contrato entre él y el alumno y las respectivas devoluciones. Asumiremos entonces que en un primer momento el profesor se coloca en el papel de resolutor (hace cognición para comprender el problema, para formular conjeturas, dice que sabe sobre los objetos matemáticos involucrados en la situación problemática), luego investiga (procura salirse del problema para buscar argumentos y razones matemáticas que sustenten las conjeturas iniciales de sus alumnos) y por ultimo diseña e implementa la situación problemática (planea, diseña, gestiona y evalúa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el marco del proyecto "Incorporación de Nuevas Tecnologías al Currículo de Matemáticas de la Educación Media de Colombia", se han suscitado una serie de actividades y situaciones problemas con el propósito de potenciar el desarrollo del pensamiento matemático de los alumnos en el nivel medio y en el universitario. En el caso del Departamento del Cesar, se han trabajado diversos problemas que conllevan al desarrollo del pensamiento variacional, sin descartar que en el proceso se utilicen los pensamientos geométrico, numérico, métrico y aleatorio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde hace unos años, he detectado que los estudiantes presentan dificultades en las conversiones entre unidades de medida. La primera dificultad se presenta, en el hecho, de que ellos, cuando están frente a un problema de estos, un gran número no realizan los planteamientos pertinentes, pues el primer interrogante, es el tipo de operación que deben aplicar, sin hacer el análisis correspondiente; la segunda, es la memorización de una operación, puesto que en la mayoría de las situaciones aplican el método tradicional, multiplicar o dividir, de acuerdo al orden de la conversión y a la información que han recibido, y en ocasiones obtiene resultados erráticos, que el estudiante los percibe como correctos o coherentes; la tercera es la equivalencia entre las unidades de medida, más que todo entre los múltiplos y submúltiplos de las unidades básicas, aparentemente no parece un problema importante, pero en el momento de realizar la conversión, es donde se detecta la incidencia de este error; la cuarta, es la falta de comprensión de los resultados, es decir, para ellos en ocasiones es normal, que ciertas respuestas sean normales, sin tener en cuenta su coherencia, por ejemplo, determinar que 35cm sea igual a 35 metros, o 3500 metros, etc.; la quinta, es el olvido de las transformaciones entre unidades de medida de forma rápida, ya que, al cabo de cierto tiempo, cuando es tema es necesitado en una clase, el estudiante no lo recuerda con la solidez que el docente desea. Estos motivos nos impulsan a interrogarnos, ¿qué hacer, para tratar de superar estas dificultades en los estudiantes de secundaria y universitarios?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluciones a los ejercicios propuestos en el anterior NÚMEROS, con especial incidencia en la metodología de su resolución, y propuesta de nuevos enunciados. Ejercicios de diferentes niveles y contenidos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artículo muestra los resultados de una actividad escolar con estudiantes del Nivel Medio Superior. La actividad se llevó a cabo en el curso de Geometría y Trigonometría. El objetivo principal de esta investigación es hacer una reflexión acerca de las diferencias entre la definición de un concepto y la imagen conceptual que los estudiantes tienen acerca de ese objeto. Así como también analizar las posibles implicaciones que esa diferencia podría generar en el entendimiento de los estudiantes de los conceptos matemáticos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerando el concepto de aprendizaje sistémico, en el que se vinculan en relación dinámica: el docente, el alumno y el conocimiento, interesa conocer la relación entre las concepciones y las competencias de los docentes de matemática de enseñanza media en relación con el tema “el rol del problema en la formación matemática de los alumnos de la Escuela Media”. Para ello se analizan las respuestas de profesores a cuestiones agrupadas en cuatro categorías de preguntas referidas a sus concepciones sobre la naturaleza del problema y a la ubicación del problema en la planificación de la clase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo pretende dar a conocer el avance, que hasta el momento se ha logrado, en la línea de investigación: “Visualización y pensamiento global en Matemáticas”, la cual persigue, a partir de la Teoría de Representaciones Semióticas de Duval, la caracterización del estilo de pensamiento global y local, de estudiantes de nivel medio superior y superior y de sus profesores. En particular reporto los resultados preliminares encontrados hasta el momento con estudiantes de primeros semestres de licenciatura al abordar un problema de precálculo, contrastado con desempeños en ajedrez para interpretar aspectos semejantes en cuanto a la forma local o global de pensar un problema viendo sus registros que lleven a resultados que pudieran servir en la mejora de la enseñanza de algunos temas de matemáticas.