885 resultados para Power distribution system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.

Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.

The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a calculation method to determine power system response during small load perturbations or minor disturbances. The method establishes the initial value of active power transient using traditional reduction technique on admittance matrix, which incorporates voltage variations in the determination. The method examines active power distribution among generators when several loads simultaneously change, and verifies that the superposition principle is applicable for this scenario. The theoretical derivation provided in the paper is validated by numerical simulations using a 3-generator 9-bus benchmark model. The results indicate that the inclusion of voltage variation renders an independent and precise measure of active power response during transient conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of a yam package is established for a ring spinning system. The yarn layer, surface area, and mass of the yam package are formulated with respect to the diameters of the empty bobbin and full yarn package, yarn count, and yarn winding-on time. Based on the principles of dynamics and aerodynamics, models of the power requirements for overcoming the skin friction drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn), and overcoming the yarn wind-on tension are developed. The skin friction coefficient on the surface of a rotating yam package is obtained from experiment. The power distribution during yam packaging is discussed based on a case study. The results indicate that overcoming the skin friction drag during yarn winding consumes the largest amount of energy. The energy required to overcome the yarn wind-on tension is also significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for calculating the power flow in distribution networks considering uncertainties in the distribution system. Active and reactive power are used as uncertain variables and probabilistically modeled through probability distribution functions. Uncertainty about the connection of the users with the different feeders is also considered. A Monte Carlo simulation is used to generate the possible load scenarios of the users. The results of the power flow considering uncertainty are the mean values and standard deviations of the variables of interest (voltages in all nodes, active and reactive power flows, etc.), giving the user valuable information about how the network will behave under uncertainty rather than the traditional fixed values at one point in time. The method is tested using real data from a primary feeder system, and results are presented considering uncertainty in demand and also in the connection. To demonstrate the usefulness of the approach, the results are then used in a probabilistic risk analysis to identify potential problems of undervoltage in distribution systems. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 80s huge efforts have been made to utilize renewable energy sources to generate electric power. An important issue about using renewable energy sources is a Distribution Management System (DMS) in presence of dispersed generators. This paper reports some aspects of integration of the dispersed generators in the DMS. Besides, an investigation of impact of the dispersed generators on the overall performances of the distribution systems in steady state is performed. In order to observe losses in the distribution networks with dispersed generators, several loss allocation methods are applied. Results obtained from case study using IEEE test network, are presented and discussed. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a smart grid environment, attention should be paid not only to the power supplied to satisfy loads and system losses but also to the services necessary to provide security and stability to the system: the so-called ancillary services. As they are well known the benefits that distributed generation can bring to electrical systems and to the environment, in this work the possibility that active power reserve for frequency control could be provided by distributed generators (DGs) in an efficient and economical way is explored. The proposed methodology was tested using the IEEE 34-bus distribution test system. The results show improvements in the capacity of the system for this ancillary service and decrease in system losses and payments of the distribution system operator to the DGs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this report is to study distributed (decentralized) three phase optimal power flow (OPF) problem in unbalanced power distribution networks. A full three phase representation of the distribution networks is considered to account for the highly unbalance state of the distribution networks. All distribution network’s series/shunt components, and load types/combinations had been modeled on commercial version of General Algebraic Modeling System (GAMS), the high-level modeling system for mathematical programming and optimization. The OPF problem has been successfully implemented and solved in a centralized approach and distributed approach, where the objective is to minimize the active power losses in the entire system. The study was implemented on the IEEE-37 Node Test Feeder. A detailed discussion of all problem sides and aspects starting from the basics has been provided in this study. Full simulation results have been provided at the end of the report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.