180 resultados para Porin prikaati


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensively drug-resistant (XDR) Klebsiella pneumoniae isolates usually carry a single carbapenemase (e.g. KPC, NDM, OXA-48-like). Here we describe an XDR K. pneumoniae of sequence type 101 that was detected in the screening rectal swab of a patient transferred from the intensive care unit of a hospital located in Belgrade (Serbia) to Bern University Hospital (Switzerland). The isolate was resistant to all antibiotics with the exception of colistin [minimum inhibitory concentration] (MIC≤0.125μg/mL), tigecycline (MIC=0.5μg/mL) and fosfomycin (MIC=2μg/mL). The isolate co-possessed class B (NDM-1) and class D (OXA-48) carbapenemases, class A extended-spectrum β-lactamase (CTX-M-15), class C cephalosporinase (CMY-16), ArmA 16S rRNA methyltransferase, substitutions in GyrA and ParC, loss of OmpK35 porin, as well as other genes conferring resistance to quinolones (qnrA), tetracyclines [tet(A)], sulfonamides (sul1, sul2), trimethoprim (dfrA12, dfrA14), rifampicin (arr-1), chloramphenicol (cmlA1, floR) and streptomycin (aadA1). The patient was placed under contact isolation precautions preventing the spread of this nearly untreatable pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmembrane transcriptional activators ToxR and TcpP modulate expression of Vibrio cholerae virulence factors by exerting control over toxT, which encodes the cytoplasmic transcriptional activator of the ctx, tcp, and acf virulence genes. However, ToxR, independently of TcpP and ToxT, activates and represses transcription of the genes encoding two outer-membrane porins, OmpU and OmpT. To determine the role of ToxR-dependent porin regulation in V. cholerae pathogenesis, the ToxR-activated ompU promoter was used to drive ompT transcription in a strain lacking OmpU. Likewise, the ToxR-repressed ompT promoter was used to drive ompU transcription in a strain lacking both ToxR and OmpT. This strategy allowed the generation of a toxR+ strain that expresses OmpT in place of OmpU, and a toxR− strain that expresses OmpU in place of OmpT. Growth rates in the presence of bile salts and other anionic detergents were retarded for the toxR+ V. cholerae expressing OmpT in place of OmpU, but increased in toxR− V. cholerae expressing OmpU in place of OmpT. Additionally, the toxR+ V. cholerae expressing OmpT in place of OmpU expressed less cholera toxin and toxin-coregulated pilus, and this effect was shown to be caused by reduced toxT transcription in this strain. Finally, the toxR+ V. cholerae expressing OmpT in place of OmpU was ≈100-fold reduced in its ability to colonize the infant-mouse intestine. Our results indicate that ToxR-dependent modulation of the outer membrane porins OmpU and OmpT is critical for V. cholerae bile resistance, virulence factor expression, and intestinal colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osmoregulated porin gene expression in Escherichia coli is controlled by the two-component regulatory system EnvZ and OmpR. EnvZ, the osmosensor, is an inner membrane protein and a histidine kinase. EnvZ phosphorylates OmpR, a cytoplasmic DNA-binding protein, on an aspartyl residue. Phospho-OmpR binds to the promoters of the porin genes to regulate the expression of ompF and ompC. We describe the use of limited proteolysis by trypsin and ion spray mass spectrometry to characterize phospho-OmpR and the conformational changes that occur upon phosphorylation. Our results are consistent with a two-domain structure for OmpR, an N-terminal phosphorylation domain joined to a C-terminal DNA-binding domain by a flexible linker region. In the presence of acetyl phosphate, OmpR is phosphorylated at only one site. Phosphorylation induces a conformational change that is transmitted to the C-terminal domain via the central linker. Previous genetic analysis identified a region in the C-terminal domain that is required for transcriptional activation. Our results indicate that this region is within a surface-exposed loop. We propose that this loop contacts the alpha subunit of RNA polymerase to activate transcription. Mass spectrometry also reveals an unusual dephosphorylated form of OmpR, the potential significance of which is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was made of the effect of supplementing a rich 3% (w/v) tryptone soya broth (TSB) medium and a poorer 1.7% (w/v) tryptone-based medium with glucose, maltose and glycogen, as carbon sources, on growth and exoprotein formation by Aeromonas salmonicida. In TSB, glucose inhibited growth and repressed exoprotein formation whilst maltose and glycogen had little effect, up to 20 h, when compared with an unsupplemented control. By contrast, in the poorer medium, over a 24-h incubation period, growth was stimulated three-fold by glycogen, and whilst exoprotein formation was low in comparison with that observed in TSB, the greatest production was observed in the presence of glycogen. Extracellular alpha-amylase was measured in the tryptone medium in the presence of the three carbon sources and the highest level, produced in the presence of glycogen, was 1.6 times that with added maltose whilst none was detectable with glucose present. This pattern was repeated in the case of the maltose-inducible porin, LamB, of the outer membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielman aiheena on tuulipuiston osayleiskaavan suunnitteluun osallistaminen. Tutkielman kohteena on Luvian ja Porin alueelle suunniteltu Oosinselän tuulipuiston osayleiskaavoitusprosessi vuosina 2010–2016, jota tutkin Luvian puoleiselta osalta. Kaavoituksen osallisiksi määrittelen yksittäisten kuntalaisten lisäksi asiantuntijatahot, jotka ottavat osaa suunnitteluun. Tutkielman tarkoitus on tuoda esiin niitä vaikutusmahdollisuuksia mitä laki sallii kansalaisille ja asiantuntijoille. Tutkimustapani on kronologinen tapaustutkimus, jonka aineistona olen käyttänyt kaavaluonnoksia ja -selostuksia, asukaskyselyitä ja haastatteluja, lausuntoja, muistutuksia/mielipiteitä, vastineita, julkaisuja, sanomalehtiä sekä tutkimuskirjallisuutta. Totean heti tutkimukseni johdannossa kolme yleisesti tiedossa olevaa kansalaisia huolestuttavaa seikkaa; muutokset maisemassa, tuulimyllyjen aiheuttama ääni sekä mahdolliset haitat lintujen muuttoreiteille. Kaavoitukseen kuuluvien pakollisten toimenpiteitten lisäksi tutkin niitä keinoja, joilla voitaisiin saavuttaa yleiskaavaan toivottu lopputulos. Erityisesti korostan vuorovaikutuksen merkitystä osallistavan, onnistuneen kaavoituksen suunnittelussa. Yleiskaavan laadintaan kuuluu ennen kaavan esittelyä ja voimaantuloa järjestetty, eri tavoin toteutettu vuorovaikutusmenettely. Sen tulee olla tasapuolista ja kaikkia tasavertaisesti huomioivaa. Oikein toteutettu vuorovaikutus aikaansaa myönteistä yhteisöllisyyttä. Sen tuloksena voidaan välttyä kaavan laadinnassa ja voimaantulossa pitkälliseltä valituskierteeltä. Tutkielma tuo esiin päätöksentekoa helpottavia asioita mutta myös niitä kielteisiä seikkoja, jotka hankaloittavat päätöksiä ja kenties estävät aiotun lopputuloksen saavuttamisen. Tutkielman tuloksena totean, että kansalaisilla ja asiantuntijoilla on todelliset mahdollisuudet vaikuttaa tuulipuiston osayleiskaavan muutoksiin ja sen voimaantuloon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As fluoroquinolonas são antibióticos que têm um largo espectro de ação contra bactérias, especialmente Gram-negativas. O seu mecanismo de ação assenta na inibição de enzimas responsáveis pela replicação do DNA. Porém, devido ao seu uso indevido, o surgimento de resistência bacteriana a estes antibióticos tem-se tornado um grave problema de saúde pública. Uma vez que os seus alvos de ação se situam no meio intracelular, a redução da permeabilidade da membrana externa de bactérias Gram-negativas constitui um dos mecanismos de resistência mais conhecidos. Esta redução é associada à baixa expressão ou mutações em porinas necessárias para permitir o seu transporte, mais concretamente, da OmpF. Estudos prévios demonstraram que a coordenação de fluoroquinolonas com iões metálicos divalentes e 1,10-fenantrolina (genericamente designados metaloantibióticos) são potenciais candidatos como alternativa às fluoroquinolonas convencionais. Estes metaloantibióticos exibem um efeito antimicrobiano comparável ou superior à fluoroquinolona na forma livre, mas parecem ter uma via de translocação diferente, independente de porinas. Estas diferenças no mecanismo de captura podem ser fundamentais para contornar a resistência bacteriana. De forma a compreender o papel dos lípidos no mecanismo de entrada dos metaloantibióticos, estudou-se a interação e localização dos metaloantibióticos da Ciprofloxacina (2ª geração), da Levofloxacina (3ª geração) e Moxifloxacina (4ª geração) com um modelo de membranas de Escherichia coli desprovido de porinas. Estes estudos foram realizados através de técnicas de espectroscopia de fluorescência, por medições em modo estacionário e resolvida no tempo. Os coeficientes de partição determinados demonstraram uma interação mais elevada dos metaloantibióticos relativamente às respetivas fluoroquinolonas na forma livre, um facto que está diretamente relacionado com as espécies existentes em solução a pH fisiológico. Os estudos de localização mostraram que estes metaloantibióticos devem estar inseridos na membrana bacteriana, confirmando a sua entrada independente de porinas. Este mecanismo de entrada, pela via hidrofóbica, é potenciado por interações eletrostáticas entre as espécies catiónicas de metaloantibiótico que existem a pH 7,4 e os grupos carregados negativamente dos fosfolípidos da membrana. Desta forma, os resultados obtidos neste estudo sugerem que a via de entrada dos metaloantibióticos e das respetivas fluoroquinolonas deve ser diferente. Os metaloantibióticos são candidatos adequados para a realização de mais testes laboratoriais e uma alternativa promissora para substituir as fluoroquinolonas convencionais, uma vez que parecem ultrapassar um dos principais mecanismos de resistência bacteriana a esta classe de antibióticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates the use of engineered vesicles to reduce perchlorate. Specifically, cell-free extracts containing perchlorate reductase and chlorite dismutase enzymes were encapsulated in a triblock copolymer vesicle functionalized with the outer membrane porin OmpF. The porin allows for perchlorate transport into the vesicles, inside which the encapsulated enzymes transform perchlorate to chloride. Perchlorate reduction was quantified using a methyl viologen colorimetric technique. The vesicle solutions had perchlorate-reducing activities ranging from 35-45 units per liter. This work shows that vesicles can provide a mechanism to utilize environmentally-relevant biological enzymes. When incorporated into a vesicle, the enzymes could be used outside of environmental conditions where they would normally be expressed by natural bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanopore-based sequencer will open the path to the fourth-generation DNA sequencing technology. The main differences between this technique and the previous ones are: DNA molecule that will be sequenced does not need a previous amplification step, is not necessary any type of specific label both molecular adaptors, and it has been abolished enzymatic process in the nucleotide sequence identification event. These differences have as result a more economic method since don’t spend the necessary reagents for the previous techniques, furthermore it lets to sequence samples with a low DNA concentration. This technique is based in the use of a membrane with a biologic nanopore inserted in it whereby the molecule to analyze (analyte) it made to pass, this membrane is placed between two reservoirs containing ions, when an external volatage is applied in both sides this lead to an ion current through the nanopore. When an analyte cross the nanopore the ion current is modified, that modification in the amplitude and duration of ion current determine the physical and chemical properties of that analyte. By means of subsequent statistical analyzes it can be determined to what sequence own this ion current blockade patterns. More used nanopores are the biologic ones, although they are working to develop synthetic nanopores. The main biologic nanopores are: α-Hemolysin from Staphylococcus aureus (α-HL), Mycobacterium smegmatis porin A (MspA) and bacteriophage phi29 pore (phi29). Α-HL and MspA have in their narrowest point a diameter similar to nucleotide size, they are functional at high temperature both wide range of pH (2-12) but MspA is able to read four nucleotide at the same time while α- HL just can read one by one. Finally, phi29 present a bigger diameter what let to get information about DNA spatial conformation and their interaction with proteins (Feng et al., 2015). Nowaday Oxford Nanopore Technologies (ONT) is the only company which has developed Nanopore technology; they have two devices available to sequencing (PromethION and MinION). The MinION is a single-use DNA sequencing device with the size of a USB memory with a total of 3000 nanopores that can sequence until 200kb. The PrometheION is big size sequencer that own 48 different cells, what let to sequence different samples at the same time, with a total of 144.000 nanopores and reading of several megabases (https://www.nanoporetech.com/). The high processivity and low cost become this technique in a great option to massive- sequencing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniae species from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1, blaSHV-28, aac(6’)1b-cr, catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1, aac(6’)-Ib, aac(3)-IId, sul1,2, blaTEM-1A,1B, blaOXA-9, blaCTX-M-15, blaSHV-11, cmlA1, erm(B), mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniae strains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniae NTUHK2044, a transposase gene InsH of IS5-13 was found inserted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β-lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neisseria meningitidis is a gram negative human obligated pathogen, mostly found as a commensal in the oropharyngeal mucosa of healthy individuals. It can invade this epithelium determining rare but devastating and fast progressing outcomes, such as meningococcal meningitidis and septicemia, leading to death (about 135000 per year worldwide). Conjugated vaccines for serogroups A, C, W135, X and Y were developed, while for N. meningitidis serogroup B (MenB) the vaccines were based on Outern Membrane Vesicles (OMV). One of them is the 4C-MenB (Bexsero). The antigens included in this vaccine’s formulation are, in addition to the OMV from New Zeland epidemic strain 98/254, three recombinant proteins: NadA, NHBA and fHbp. While the role of these recombinant components was deeply characterized, the vesicular contribution in 4C-MenB elicited protection is mediated mainly by porin A and other unidentified antigens. To unravel the relative contribution of these different antigens in eliciting protective antibody responses, we isolated human monoclonal antibodies (mAbs) from single-cell sorted plasmablasts of 3 adult vaccinees peripheral blood. mAbs have been screened for binding to 4C-MenB components by Luminex bead-based assay. OMV-specific mAbs were purified and tested for functionality by serum bactericidal assay (SBA) on 18 different MenB strains and characterized in a protein microarray containing a panel of prioritized meningococcal proteins. The bactericidal mAbs identified to recognize the outer membrane proteins PorA and PorB, stating the importance of PorB in cross-strain protection. In addition, RmpM, BamE, Hyp1065 and ComL were found as immunogenic components of the 4C-MenB vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moraxella catarrhalis (Mcat) represents a human pathogen implicated in debilitating diseases, such as Chronic Obstructive Pulmonary Disease (COPD). One of the hallmarks of COPD is the excessive neutrophil oxidative stress mediated by reactive oxygen species (ROS). Mcat shows a higher innate level of resistance to exogenous oxidative stress compared to the co-infecting human airways pathogens such as non-typeable Haemophilus influenzae (NTHi) but the underlying mechanisms are currently not well defined. In this thesis, we demonstrated that, differently from NTHi, Mcat was able to directly interfere with ROS production and ROS-related responses such as neutrophil extracellular traps (NET) and autophagy in differentiated neutrophilic-like dHL-60 cells and primary cells. The underlying mechanisms were shown to be phagocytosis/opsonins-independent but contact-dependent, due to the engagement of the immunosuppressive receptors. Indeed, we identified that through OmpCD porin, Mcat was able to engage Siglec inhibitory receptors suppressing ROS generation by the host cells. Furthermore, Mcat provided a safer niche for the co-infecting NTHi bacterium which was otherwise susceptible to the host antimicrobial arsenal. Subsequently, to deeply characterize the Mcat global transcriptional response to oxidative stress, an RNA-Seq experiment was performed on exponentially growing bacteria exposed to sublethal amounts of H2O2 or CuSO4, stimuli that the pathogens experienced once they are phagocytosed. We unraveled a previously unidentified common transcriptional program following H2O2 and CuSO4 exposure, demonstrating a similar defense mechanism to the stress conditions encountered in neutrophils. We ascertained new crucial factors for this pathogen response and established a novel in vivo Mcat infection model, using the invertebrate Galleria mellonella. Actually, we observed that deletion mutants of genes implicated in oxidative stress resistance exhibited reduced virulence. In conclusion, this work represents an important step in the understanding of Mcat innate resistance mechanisms to oxidative stress and further elucidate the virulence mechanisms during infection.