960 resultados para Phototrophic cultivation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Processo FAPESP: 12/15101-4
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the study was to evaluate the production of two strains of Ganoderma lucidum on agricultural waste and carry out bromatological analyses of the basidiomata obtained from the cultivation. The experiment was carried out at the Mushroom Module at the School of Agronomic Sciences of the São Paulo State University (FCA/UNESP - Botucatu, SP, Brazil) and two strains were used (GLM-09/01 and GLM-10/02) which were cultivated on waste, oat straw, bean straw, brachiaria grass straw, Tifton grass straw and eucalyptus sawdust under two situations: with (20%) and without (0%) supplementation with wheat bran. All the waste was taken from dumps of agricultural activities in Botucatu-SP. Both treatments were carried out in 10 repetitions, totaling 200 packages. The mushrooms cultivation took 90 days. Next, the biological efficiency of the treatments and the bromatological analysis of the basidiomata were evaluated. The biological efficiency (BE) values (%) varied from 0.0 to 6.7%. In the mushroom bromatological analyses, the results ranged from 8.7 to 13.7%, from 2.0 to 6.7%, from 0.83 to 1.79% and from 38.8 to 54.5%, for total protein, ethereal extract, ash and crude fiber, respectively. Thus, we conclude that the substrates which presented the greater yield were the brachiaria straw, 20% in both strains tested (GLM-09/01 and GLM-10/02) and the bean straw, 20% in the strain GLM-10/02. The mushrooms showed high levels of ethereal extract, fibers and ashes and a low level of proteins.
Resumo:
Two compost formulations, based on Braquiaria straw (Brachiaria sp.), a conventional one and a spent one, were tested in the cultivation of ABL 99/30 and ABL 04/49 strains of Agaricus blazei. The experimental design was in a completely randomized factorial scheme with four treatments (two strains of A. blazei x two types of compost) and 30 repetitions. Each experimental unit consisted of a box with 10 to 10.5 kg of moist fresh compost. According to the results obtained, the loss of organic matter of the composts was affected by the A. blazei strain and the type of compost used. The traditional compost lost a higher organic matter content compared to the spent compost, and the ABL 99/30 strain caused a higher loss of organic matter in the composts compared to the ABL 04/49 strain. Yield, biological efficiency, mass and number of basidiomata produced were similar between the conventional and the spent compost, as well as the chemical analysis of the produced basidiomata. However, the A. blazei strains showed some differences among each other, the basidiomata of strain ABL 04/49 obtained a higher percentage of crude protein in their composition, compared to the ABL 99/30, in both composts. Thus, the utilization of spent compost in the cultivation of A. blazei did not impair the basidiomata yield nor their nutritional value, demonstrating it to be a good option to be used as an ingredient in the compost formulation for the A. blazei cultivation.
Resumo:
The potential of the red alga Kappaphycus alvarezii to remove nutrients was tested to treat effluents of Trachinotus carolinus fish cultivation, and the production of carrageenan in this condition was analyzed. Experiments were conducted in four tanks of 8000 L with approximately 1200 fishes of 30 g each integrated with three tanks of 100 L with 700 g of K. alvarezii, as initial biomass per tank. Seawater was re-circulated between tanks with seaweed and with fish. As a control, three tanks with seawater circulating in an open system were utilized. Seawater samples were collected daily for 10 days and concentrations of nitrate, nitrite, ammonium and phosphate were determined in the inflow and outflow water of the tanks. Significant differences between both collecting points were considered as nutrient removal by the seaweed. Growth rates and carrageenan yields were also analyzed in seaweed cultivated in seawater and in effluents. Growth rates of seaweed cultivated in tanks were lower than those obtained in open sea and in laboratory cultivation. Effluents had concentrations of nitrate and nitrite ca. 100 times higher than in the control. Maximum values of nutrient removal on effluents were: nitrate= 18.2%; nitrite =50.8%; ammonium =70.5% and phosphate =26.8%. All plants survived throughout the experimental period, but some developed ""ice-ice"", a disease associated with physiological stress. After the experimental period, some plants selected and cultivated in open sea presented higher growth rates in 40 days, indicating nutrient storage. No significant differences between carrageenan yields of K alvarezii cultivated in seawater and in the effluents were observed. Our results show that K. alvarezii can be utilized as a biofilter for fish cultivation effluents, reducing the eutrophication process and can also be processed for carrageenan production, which provides an additional benefit to the fisheries. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Fed-batch culture allows the cultivation of Arthrospira platensis using urea as nitrogen source. Tubular photobioreactors substantially increase cell growth, but the successful use of this cheap nitrogen source requires a knowledge of the kinetic and thermodynamic parameters of the process. This work aims at identifying the effect of two independent variables, temperature (T) and urea daily molar flow-rate (U), on cell growth, biomass composition and thermodynamic parameters involved in this photosynthetic cultivation. RESULTS: The optimal values obtained were T = 32 degrees C and U = 1.16 mmol L-1 d-1, under which the maximum cell concentration was 4186 +/- 39 mg L-1, cell productivity 541 +/- 5 mg L-1 d-1 and yield of biomass on nitrogen 14.3 +/- 0.1 mg mg-1. Applying an Arrhenius-type approach, the thermodynamic parameters of growth (?H* = 98.2 kJ mol-1; ?S* = - 0.020 kJ mol-1 K-1; ?G* = 104.1 kJ mol-1) and its thermal inactivation (Delta H-D(0) =168.9 kJ mol-1; Delta S-D(0) = 0.459 kJ mol-1 K-1; Delta G(D)(0) =31.98 kJ mol-1) were estimated. CONCLUSIONS: To maximize cell growth T and U were simultaneously optimized. Biomass lipid content was not influenced by the experimental conditions, while protein content was dependent on both independent variables. Using urea as nitrogen source prevented the inhibitory effect already observed with ammonium salts. Copyright (c) 2012 Society of Chemical Industry
Resumo:
Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for research and debate concerning the origins, evolution, history and contemporary cultivation of bitter manioc in Amazonia and beyond.
Resumo:
The present study aimed at evaluating the production of Arthrospira platensis in tubular photobioreactor using CO2 from ethanol fermentation. The results of these cultivations were compared to those obtained using CO2 from cylinder at different protocols of simultaneous ammonium sulfate and sodium nitrate feeding. Maximum cell concentration (X-m), cell productivity (P-x), nitrogen-to-cell conversion factor (Y-X/N), and biomass composition (total lipids and proteins) were selected as responses and evaluated by analysis of variance. The source of CO2 did not exert any significant statistical influence on these responses, which means that the flue gas from ethanol fermentation could successfully be used as a carbon source as well as to control the medium pH, thus contributing to reduce the greenhouse effect. The results taken as a whole demonstrated that the best combination of responses mean values (X-m = 4.543 g L-1; P-x = 0.460 g L-1 d(-1); Y-X/N = 15.6 g g(-1); total lipids = 8.39%; total proteins = 18.7%) was obtained using as nitrogen source a mixture of 25% NaNO3 and 75% (NH4)(2)SO4, both expressed as nitrogen. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This meta-analysis of land-cover transformations of the past 10-15 years in tropical forest-agriculture frontiers world-wide shows that swidden agriculture decreases in landscapes with access to local, national and international markets that encourage cattle production and cash cropping, including biofuels. Conservation policies and practices also accelerate changes in swidden by restricting forest clearing and encouraging commercial agriculture. However, swidden remains important in many frontier areas where farmers have unequal or insecure access to investment and market opportunities, or where multi-functionality of land uses has been preserved as a strategy to adapt to current ecological, economic and political circumstances. In some areas swidden remains important simply because intensification is not a viable choice, for example when population densities and/or food market demands are low. The transformation of swidden landscapes into more intensive land uses has generally increased household incomes, but has also led to negative effects on the social and human capital of local communities to varying degrees. From an environmental perspective, the transition from swidden to other land uses often contributes to permanent deforestation, loss of biodiversity, increased weed pressure, declines in soil fertility, and accelerated soil erosion. Our prognosis is that, despite the global trend towards land use intensification, in many areas swidden will remain part of rural landscapes as the safety component of diversified systems, particularly in response to risks and uncertainties associated with more intensive land use systems. (C) 2011 Elsevier Ltd. All rights reserved.