976 resultados para Phosphate edge cladding glasses
Resumo:
Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.
Resumo:
When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.
Resumo:
Teaching awards, grants and fellowships are strategies used to recognise outstanding contributions to learning and teaching, encourage innovation, and to shift learning and teaching from the edge to centre stage. Examples range from school, faculty and institutional award and grant schemes to national schemes such as those offered by the Australian Learning and Teaching Council (ALTC), the Carnegie Foundation for the Advancement of Teaching in the United States, and the Fund for the Development of Teaching and Learning in higher education in the United Kingdom. The Queensland University of Technology (QUT) has experienced outstanding success in all areas of the ALTC funding since the inception of the Carrick Institute for Learning and Teaching in 2004. This paper reports on a study of the critical factors that have enabled sustainable and resilient institutional engagement with ALTC programs. As a lens for examining the QUT environment and practices, the study draws upon the five conditions of the framework for effective dissemination of innovation developed by Southwell, Gannaway, Orrell, Chalmers and Abraham (2005, 2010): 1. Effective, multi-level leadership and management 2. Climate of readiness for change 3. Availability of resources 4. Comprehensive systems in institutions and funding bodies 5. Funding design The discussion on the critical factors and practical and strategic lessons learnt for successful university-wide engagement offer insights for university leaders and staff who are responsible for learning and teaching award, grant and associated internal and external funding schemes.
Resumo:
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)•2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm-1 and the less intense band at 866 cm-1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm-1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm-1 and 514, 541 and 570 cm-1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm-1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm-1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.
Resumo:
Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.
Resumo:
Background and Objective: A number of bone filling materials containing calcium (Ca++) and phosphate (P) ions have been used in the repair of periodontal bone defects; however, the effect that local release of Ca++ and P ions have on biological reactions is not fully understood. In this study, we investigated the effects of various levels of Ca++ and P ions on the proliferation, osteogenic differentiation, and mineralization of human periodontal ligament cells (hPDLCs). Materials and Methods: hPDLCs were obtained using an explant culture method. Defined concentrations and ratios of ionic Ca++ to inorganic P were added to standard culture and osteogenic induction media. The ability of hPDLCs to proliferate in these growth media was assayed using the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated by FITC-Annexin V/PI double staining method. Osteogenic differentiation and mineralization were investigated by morphological observations, alkaline phosphatase (ALP) activity, and Alizarin red S/von Kossa staining. The mRNA expression of osteogenic related markers was analyzed using a reverse transcriptase polymerase chain reaction (RT-PCR). Results: Within the ranges of Ca++ and P ions concentrations tested, we observed that increased concentrations of Ca++ and P ions enhanced cell proliferation and formation of mineralized matrix nodules; whereas ALP activity was reduced. The RT-PCR results showed that elevated concentrations of Ca++ and P ions led to a general increase of Runx2 mRNA expression and decreased ALP mRNA expression, but gave no clear trend on OCN mRNA levels. Conclusion: The concentrations and ratios of Ca++ and P ions could significantly influence proliferation, differentiation, and mineralization of hPDLCs. Within the range of concentrations tested, we found that the combination of 9.0 mM Ca++ ions and 4.5 mM P ions were the optimum concentrations for proliferation, differentiation, and mineralization in hPDLCs.
Resumo:
Three wardite mineral samples from different origins have been analysed by vibrational spectroscopy. The mineral is unusual in that it belongs to a unique symmetry class, namely the tetragonal-trapezohedral group. The structure of wardite contains layers of corner-linked –OH bridged MO6 octahedra stacked along the tetragonal C-axis in a four-layer sequence and linked by PO4 groups. Consequentially not all phosphate units are identical. Thus, two intense Raman bands observed at 995 and 1051 cm-1 are assigned to the ν1 PO43- symmetric stretching mode. Intense Raman bands are observed at 605 and 618 cm-1 with shoulders at 578 and 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO43-. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Sharp infrared bands are observed at 3544 and 3611 cm-1 are attributed to the OH stretching vibrations of the hydroxyl units. Vibrational spectroscopy enables subtle details of the molecular structure of wardite to be determined.