885 resultados para Pattern recognition and classification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces ART 2-A, an efficient algorithm that emulates the self-organizing pattern recognition and hypothesis testing properties of the ART 2 neural network architecture, but at a speed two to three orders of magnitude faster. Analysis and simulations show how the ART 2-A systems correspond to ART 2 dynamics at both the fast-learn limit and at intermediate learning rates. Intermediate learning rates permit fast commitment of category nodes but slow recoding, analogous to properties of word frequency effects, encoding specificity effects, and episodic memory. Better noise tolerance is hereby achieved without a loss of learning stability. The ART 2 and ART 2-A systems are contrasted with the leader algorithm. The speed of ART 2-A makes practical the use of ART 2 modules in large-scale neural computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal representation and reasoning plays an important role in Data Mining and Knowledge Discovery, particularly, in mining and recognizing patterns with rich temporal information. Based on a formal characterization of time-series and state-sequences, this paper presents the computational technique and algorithm for matching state-based temporal patterns. As a case study of real-life applications, zone-defense pattern recognition in basketball games is specially examined as an illustrating example. Experimental results demonstrate that it provides a formal and comprehensive temporal ontology for research and applications in video events detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes of enrichment, concentration and retention are thought to be important for the successful recruitment of small pelagic fish in upwelling areas, but are difficult to measure. In this study, a novel approach is used to examine the role of spatio-temporal oceanographic variability on recruitment success of the Northern Benguela sardine Sardinops sagax. This approach applies a neural network pattern recognition technique, called a self-organising map (SOM), to a seven-year time series of satellite-derived sea level data. The Northern Benguela is characterised by quasi-perennial upwelling of cold, nutrient-rich water and is influenced by intrusions of warm, nutrient-poor Angola Current water from the north. In this paper, these processes are categorised in terms of their influence on recruitment success through the key ocean triad mechanisms of enrichment, concentration and retention. Moderate upwelling is seen as favourable for recruitment, whereas strong upwelling, weak upwelling and Angola Current intrusion appear detrimental to recruitment success. The SOM was used to identify characteristic patterns from sea level difference data and these were interpreted with the aid of sea surface temperature data. We found that the major oceanographic processes of upwelling and Angola Current intrusion dominated these patterns, allowing them to be partitioned into those representing recruitment favourable conditions and those representing adverse conditions for recruitment. A marginally significant relationship was found between the index of sardine recruitment and the frequency of recruitment favourable conditions (r super(2) = 0.61, p = 0.068, n = 6). Because larvae are vulnerable to environmental influences for a period of at least 50 days after spawning, the SOM was then used to identify windows of persistent favourable conditions lasting longer than 50 days, termed recruitment favourable periods (RFPs). The occurrence of RFPs was compared with back-calculated spawning dates for each cohort. Finally, a comparison of RFPs with the time of spawning and the index of recruitment showed that in years where there were 50 or more days of favourable conditions following spawning, good recruitment followed (Mann-Whitney U-test: p = 0.064, n = 6). These results show the value of the SOM technique for describing spatio-temporal variability in oceanographic processes. Variability in these processes appears to be an important factor influencing recruitment in the Northern Benguela sardine, although the available data time series is currently too short to be conclusive. Nonetheless, the analysis of satellite data, using a neural network pattern-recognition approach, provides a useful framework for investigating fisheries recruitment problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic regression and Gaussian mixture model (GMM) classifiers have been trained to estimate the probability of acute myocardial infarction (AMI) in patients based upon the concentrations of a panel of cardiac markers. The panel consists of two new markers, fatty acid binding protein (FABP) and glycogen phosphorylase BB (GPBB), in addition to the traditional cardiac troponin I (cTnI), creatine kinase MB (CKMB) and myoglobin. The effect of using principal component analysis (PCA) and Fisher discriminant analysis (FDA) to preprocess the marker concentrations was also investigated. The need for classifiers to give an accurate estimate of the probability of AMI is argued and three categories of performance measure are described, namely discriminatory ability, sharpness, and reliability. Numerical performance measures for each category are given and applied. The optimum classifier, based solely upon the samples take on admission, was the logistic regression classifier using FDA preprocessing. This gave an accuracy of 0.85 (95% confidence interval: 0.78-0.91) and a normalised Brier score of 0.89. When samples at both admission and a further time, 1-6 h later, were included, the performance increased significantly, showing that logistic regression classifiers can indeed use the information from the five cardiac markers to accurately and reliably estimate the probability AMI. © Springer-Verlag London Limited 2008.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation, carried out in order to verify the feasibility of a ‘drive-by’ approach which uses a vehicle instrumented with accelerometers to detect and locate damage in a bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform and damage indicators are evaluated and compared. Alternative statistical pattern recognition techniques are incorporated to allow for repeated vehicle passes. Parameters such as vehicle speed, damage level, location and road roughness are varied in simulations to investigate the effect. A scaled laboratory experiment is carried out to assess the effectiveness of the approach in a more realistic environment, considering a number of bridge damage scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to address road safety effectively, it is essential to understand all the factors, which
attribute to the occurrence of a road collision. This is achieved through road safety
assessment measures, which are primarily based on historical crash data. Recent advances
in uncertain reasoning technology have led to the development of robust machine learning
techniques, which are suitable for investigating road traffic collision data. These techniques
include supervised learning (e.g. SVM) and unsupervised learning (e.g. Cluster Analysis).
This study extends upon previous research work, carried out in Coll et al. [3], which
proposed a non-linear aggregation framework for identifying temporal and spatial hotspots.
The results from Coll et al. [3] identified Lisburn area as the hotspot, in terms of road safety,
in Northern Ireland. This study aims to use Cluster Analysis, to investigate and highlight any
hidden patterns associated with collisions that occurred in Lisburn area, which in turn, will
provide more clarity in the causation factors so that appropriate countermeasures can be put
in place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyclonal antibodies prepared against the two glycoproteins (Mr 100 and 85 kDa) involved in recognition and attachment of the mycoparasite, Piptocephalis virginiana, to its hosts, Mortierella pusilla and Phascolomyces articulosus, susceptible and resistant, respectively, were employed to localize the antigens at their cell surfaces. Indirect immunocytochemical technique using secondary antibodies labelled with either FITC or gold particles as probes, were used. FITC-Iabelled antibodies revealed a discontinous pattern of fluorescence on the hyphae of MortlerelLa pusilla and no fluorescence on the hyphae of Phascolomyces articulosus. Intensity of fluorescence was high in the germinating spores of both the fungi. Fluoresence could be observed on P. articulosus hyphae pretreated with a commercial proteinase. Fluorescence was not observed on either hyphae or germinating spores of the nonhost M0 r tie re11 a ca ndelabrum and the mycoparasite P. virginiana. Antibodies labelled with gold conjugate showed a different pattern of antigen localization on the hyphal walls of the susceptible and resistant hosts. Patches of gold particles were observed allover the whole cell wall of the susceptible host but only on the inner cell wall layer of the resistant host. Cell wall fragments of the susceptible host but not those of the resistant host, previously incubated with the antibodies inhibited attachment of the mycoparasite. Implications of preferential localization of the antigen in the resistant host and its absence in the nonhost are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern-recognition receptors (PRRs) detect molecular signatures of microbes and initiate immune responses to infection. Prototypical PRRs such as Toll-like receptors (TLRs) signal via a conserved pathway to induce innate response genes. In contrast, the signaling pathways engaged by other classes of putative PRRs remain ill defined. Here, we demonstrate that the β-glucan receptor Dectin-1, a yeast binding C type lectin known to synergize with TLR2 to induce TNFα and IL-12, can also promote synthesis of IL-2 and IL-10 through phosphorylation of the membrane proximal tyrosine in the cytoplasmic domain and recruitment of Syk kinase. syk−/− dendritic cells (DCs) do not make IL-10 or IL-2 upon yeast stimulation but produce IL-12, indicating that the Dectin-1/Syk and Dectin-1/TLR2 pathways can operate independently. These results identify a novel signaling pathway involved in pattern recognition by C type lectins and suggest a potential role for Syk kinase in regulation of innate immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.