945 resultados para Parallel Corpus
Resumo:
We consider single-source, single-sink multi-hop relay networks, with slow-fading Rayleigh fading links and single-antenna relay nodes operating under the half-duplex constraint. While two hop relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this two-part paper, we identify two families of networks that are multi-hop generalizations of the two hop network: K-Parallel-Path (KPP) networks and Layered networks. In the first part, we initially consider KPP networks, which can be viewed as the union of K node-disjoint parallel paths, each of length > 1. The results are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the optimal DMT of KPP(D) networks with K >= 4, and KPP(I) networks with K >= 3. Along the way, we derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. As a special case, the DMT of two-hop relay network without direct link is obtained. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two, as previously believed and that, simple AF protocols are often sufficient to attain the best possible DMT.
Resumo:
Computational docking of ligands to protein structures is a key step in structure-based drug design. Currently, the time required for each docking run is high and thus limits the use of docking in a high-throughput manner, warranting parallelization of docking algorithms. AutoDock, a widely used tool, has been chosen for parallelization. Near-linear increases in speed were observed with 96 processors, reducing the time required for docking ligands to HIV-protease from 81 min, as an example, on a single IBM Power-5 processor ( 1.65 GHz), to about 1 min on an IBM cluster, with 96 such processors. This implementation would make it feasible to perform virtual ligand screening using AutoDock.
Resumo:
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (P1, Z = 1) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc, Natl, Acad. Sci. USA 83, 9284-9288). The monoclinic form (P2(1), Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal system, but small changes in conformational angles are associated with a shift of the helix from a predominantly alpha-type to a predominantly 3(10)-type. The r.m.s. deviation of 33 atoms in the backbone and C beta positions of residues 2-8 is only 0.29 A between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P2(1) cell, a = 9.422(2) A, b = 36.392(11) A, c = 10.548(2) A, beta = 111.31(2) degrees and V = 3369.3 A for 2 molecules of C60H97N11O13 per cell.
Resumo:
An apolar helical decapeptide with different end groups, Boc- or Ac-, crystallizes in a completely parallel fashion for the Boc-analog and in an antiparallel fashion for the Ac-analog. In both crystals, the packing motif consists of rows of parallel molecules. In the Boc-crystals, adjacent rows assemble with the helix axes pointed in the same direction. In the Ac-crystals, adjacent rows assemble with the helix axes pointed in opposite directions. The conformations of the molecules in both crystals are quite similar, predominantly alpha-helical, except for the tryptophanyl side chain where chi 1 congruent to 60 degrees in the Boc- analog and congruent to 180 degrees in the Ac-analog. As a result, there is one lateral hydrogen bond between helices, N(1 epsilon)...O(7), in the Ac-analog. The structures do not provide a ready rationalization of packing preference in terms of side-chain interactions and do not support a major role for helix dipole interactions in determining helix orientation in crystals. The crystal parameters are as follow. Boc-analog: C60H97N11O13.C3H7OH, space group Pl with a = 10.250(3) A, b = 12.451(4) A, c = 15.077(6) A, alpha = 96.55(3) degrees, beta = 92.31(3) degrees, gamma = 106.37(3) degrees, Z = 1, R = 5.5% for 5581 data ([F] greater than 3.0 sigma(F)), resolution 0.89 A. Ac-analog: C57H91N11O12, space group P2(1) with a = 9.965(1) A, b = 19.707(3) A, c = 16.648(3) A, beta = 94.08(1), Z = 2, R = 7.2% for 2530 data ([F] greater than 3.0 sigma(F)), resolution 1.00 A.
Resumo:
In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.
Resumo:
A new mathematical model for the solution of the problem of free convection heat transfer between vertical parallel flat isothermal plates under isothermal boundary conditions, has been presented. The set of boundary layer equations used in the model are transformed to nonlinear coupled differential equations by similarity type variables as obtained by Ostrach for vertical flat plates in an infinite fluid medium. By utilising a parameter ηw* to represent the outer boundary, the governing differential equations are solved numerically for parametric values of Pr = 0.733. 2 and 3, and ηw* = 0.1, 0.5, 1, 2, 3, 4, ... and 8.0. The velocity and temperature profiles are presented. Results indicate that ηw* can effectively classify the system into (1) thin layers where conduction predominates, (2) intermediate layers and (3) thick layers whose results can be predicted by the solutions for vertical flat plates in infinite fluid medium. Heat transfer correlations are presented for the 3 categories. Several experimental and analytical results available in the literature agree with the present correlations.
Resumo:
The impact of Greek-Egyptian bilingualism on language use and linguistic competence is the key issue in this dissertation. The language use in a corpus of 148 Greek notarial contracts is analyzed on phonological, morphological and syntactic levels. The texts were written by bilingual notaries (agoranomoi) in Upper Egypt in the later Hellenistic period. They present, for the most part, very good administrative Greek. On the other hand, their language contains variation and idiosyncrasies that were earlier condemned as ungrammatical and bad Greek, and were not subjected to closer analysis. In order to reach plausible explanations for those phenomena, a thorough research into the sociohistorical and linguistic context was needed before the linguistic analysis. The general linguistic landscape, the population pattern and the status and frequency of Greek literacy in Ptolemaic Egypt in general, and in Upper Egypt in particular, are presented. Through a detailed examination of the notaries themselves (their names, families and handwriting), it became evident that there were one to three persons at the notarial office writing under the signature of one notary. Often the documents under one notary's name were written in the same hand. We get, therefore, exceptionally close to studying idiolects in written material from antiquity. The qualitative linguistic analysis revealed that the notaries made relatively few orthographic mistakes that reflect the ongoing phonological changes and they mastered the morphological forms. The problems arose at the syntactic level, for example, with the pattern of agreement between the noun groups or a noun with its modifiers. The significant structural differences between Greek and Egyptian can be behind the innovative strategies used by some of the notaries. Moreover, certain syntactic structures were clearly transferred from the notaries first language, Egyptian. This is obvious in the relative clause structure. Transfer can be found in other structures, as well, although, we must not forget the influence of parallel Greek structures. Sometimes these can act simultaneously. The interesting linguistic strategies and transfer features come mostly from the hand of one notary, Hermias. Some other notaries show similar patterns, for example, Hermias' cousin, Ammonios. Hermias' texts reveal that he probably spoke Greek more than his predecessors. It is possible to conclude, then, that the notaries of the later generations were more fluently bilingual; their two languages were partly integrated in their minds as an interlanguage combining elements from both languages. The earlier notaries had the two languages functionally separated and they followed the standardized contract formulae more rigidly.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
Changes in MAPK activities were examined in the corpus luteum (CL) during luteolysis and pregnancy, employing GnRH antagonist (Cetrorelix)-induced luteolysis, stages of CL, and hCG treatment to mimic early pregnancy as model systems in the bonnet monkey. We hypothesized that MAPKs could serve to phosphorylate critical phosphoproteins to regulate luteal function. Analysis of several indices for structural (caspase-3 activity and DNA fragmentation) and functional (progesterone and steroidogenic acute regulatory protein expression) changes in the CL revealed that the decreased luteal function observed during Cetrorelix treatment and late luteal phase was associated with increased caspase-3 activity and DNA fragmentation. As expected, human chorionic gonadotropin treatment dramatically increased luteal function, but the indices for structural changes were only partially attenuated. All three MAPKs appeared to be constitutively active in the mid-luteal-phase CL, and activities of ERK-1/2 and p38-MAPK (p38), but not Jun N-terminal kinase (JNK)-1/2, decreased significantly (P < 0.05) within 12 - 24 h after Cetrorelix treatment. During the late luteal phase, in contrast to decreased ERK-1/2 and p38 activities, JNK-1/2 activities increased significantly (P < 0.05). Although human chorionic gonadotropin treatment increased ERK-1/2 and p38 activities, it decreased JNK-1/2 activities. The activation status of p38 was correlated with the phosphorylation status of an upstream activator, MAPK kinase-3/6 and the expression of MAPK activated protein kinase-3, a downstream target. Intraluteal administration of p38 kinase inhibitor (SB203580), but not MAPK kinase-1/2 inhibitor (PD98059), decreased the luteal function. Together, these data suggest an important role for p38 in the regulation of CL function in primates.