194 resultados para Palpation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outcome of spinal surgery in dogs with absent voluntary motor function and nociception following intervertebral disc (IVD) herniation is highly variable, which likely attests to differences in the severity of spinal cord damage. This retrospective study evaluated the extent to which neurological signs correlated with histologically detected spinal cord damage in 60 dogs that were euthanased because of thoracolumbar IVD herniation. Clinical neurological grades correlated significantly with the extent of white matter damage (P<0.001). However, loss of nociception also occurred in 6/31 (19%) dogs with relatively mild histological changes. The duration of clinical signs, Schiff-Sherrington posture, loss of reflexes and pain on spinal palpation were not significantly associated with the severity of spinal cord damage. Although clinical-pathological correlation was generally good, some clinical signs frequently thought to indicate severe cord injury did not always correlate with the degree of cord damage, suggesting functional rather than structural impairment in some cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CASE DESCRIPTION A 7-year-old 573-kg (1,261 -lb) Swiss Warmblood gelding was evaluated because of signs of acute abdominal pain. CLINICAL FINDINGS Physical examination revealed a markedly distended abdomen with subjectively reduced borborygmi in all abdominal quadrants. A large, gas-distended viscus was present at the pelvic brim preventing complete palpation of the abdomen per rectum. Ultrasonographic evaluation could not be safely performed in the initial evaluation because of severe signs of abdominal pain. TREATMENT AND OUTCOME Ventral midline celiotomy was performed, and right dorsal displacement of the ascending colon was corrected. Progressive signs of abdominal pain after surgery prompted repeat ventral midline celiotomy, and small intestinal incarceration in a large, radial mesojejunal rent was detected. The incarceration was reduced, but the defect was not fully accessible for repair via the celiotomy. Repair of the mesenteric defect was not attempted, and conservative management was planned after surgery; however, signs of colic returned. A standard laparoscopic approach was attempted from both flanks in the standing patient, but the small intestine could not be adequately mobilized for full evaluation of the rent. Hand-assisted laparoscopic surgery (HALS) allowed identification and reduction of jejunal incarceration and repair of the mesenteric rent. Although minor ventral midline incisional complications were encountered, the horse recovered fully. CLINICAL RELEVANCE HALS techniques should be considered for repair of mesenteric rents in horses. In the horse of this report, HALS facilitated identification, evaluation, and repair of a large radial mesenteric rent that was not accessible from a ventral median celiotomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study with 40 multiparous high yielding dairy cows was conducted to investigate the influence of an induced negative energy balance (NEB) on reproductive performance. Energy restriction of 49% was performed for 3 weeks beginning on oestrous cycle day 12 of first oestrous cycle after day 85 post partum (pp). From day 20 to day 150 pp animals were monitored for ovary activity three times weekly using rectal palpation and transrectal ultrasound scanning and were inseminated around day 150 pp. Additionally, milk progesterone and milk hydrocortisone were analyzed twice a week. Body condition score and body weight as well as blood glucose, plasma nonesterified fatty acids and plasma β-hydroxybutyrate were recorded weekly. According to oestrous cycle activity before (Period 1 = natural energy deficiency), during (Period 2) and after (Period 3) induced energy restriction animals were assigned to the following groups: Delayed first ovulation until day 45 pp, normal oestrous cycle, prolonged oestrous cycle and shortened oestrous cycle. Sporadic significances, but no clear effect of the metabolic state on reproductive performance could be found during Periods 1 and 2. Service success and conception rate were also not influenced. Our results demonstrate a remarkable adaptation of reproductive activity to metabolic challenges. Animals were able to compensate natural NEB in Period 1 as well as induced NEB (Period 2) for preventing metabolic disorders and maintaining reproductive activity. Therefore dietary energy availability had no effect on reproductive performance at more than 85 days in milk in the present study. To understand reproductive failures in dairy cows focus should be laid on genetic disposition of high yielding individuals that cope successful with metabolic challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the present study was to evaluate the effect of different methods of rubber-ring castration on acute and chronic pain in calves. Sixty-three 4-6 week-old calves were randomly and sequentially allocated to one of five groups: Group RR (traditional rubber ring castration); group BRR (combination of one rubber ring with Burdizzo); group Rcut (one rubber ring applied with the scrotal tissue and rubber ring removed on day 9); group 3RR (three rubber rings placed one above the other around the scrotal neck); and group CO (controls; sham-castrated). All calves received 0.2 mL/kg bodyweight lidocaine 2%, injected into the spermatic cords and around the scrotal neck 15 min before castration. The presence of acute and chronic pain was assessed using plasma cortisol concentrations, response to palpation of scrotal area, time from castration until complete wound healing, and behavioural signs. Calves of group 3RR showed severe swelling and inflammation, and licking of the scrotal area occurred significantly more often than in groups Rcut and CO. Technique 3RR was discontinued for welfare reasons before the end of the study. All castration groups had significantly more pain upon palpation than calves of group CO, but palpation elicited markedly less pain in group Rcut than in the other castration groups. The most rapid healing time and shortest duration of chronic pain after castration was achieved in group Rcut. For welfare reasons, the Rcut technique should be considered as a valuable alternative to traditional rubber ring castration of calves at 4-6 weeks of age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVE To determine the effectiveness of an esophageal doppler device to non-invasively detect experimental pseudo-electromechanical dissociation (pseudo-EMD). DESIGN Prospective, controlled, laboratory investigation using an asphyxial canine cardiac arrest model and a newly-developed esophageal flat-flow probe doppler unit. INTERVENTIONS Mongrel dogs (20) were instrumented for hemodynamic monitoring. The esophageal doppler probe was placed in the distal esophagus of each animal. Electromechanical dissociation (EMD) was induced by clamping the endotracheal tube. MEASUREMENTS AND MAIN RESULTS A period of pseudo-EMD was defined as the time where cardiac contractility was present, measured by a micromanometer tipped thoracic aortic catheter, without concurrent femoral pulses by palpation. The pseudo-EMD period could be produced consistently in all 20 animals. The characteristic doppler flow sounds were easily heard using the esophageal device in all animals. The time from endotracheal tube clamping until loss of femoral pulses was 622 +/- 96 s; until loss of radial artery doppler signals was 616 +/- 92 s; until loss of esophageal doppler signals was 728 +/- 88 s; and until loss of aortic fluctuations by thoracic aortic catheter was 728 +/- 82 s. The times to loss of esophageal doppler sounds and loss of aortic fluctuations were not significantly different. However, they were significantly longer than the time to loss of femoral pulses (P < 0.02). CONCLUSIONS The canine asphyxial EMD model can be used for short experimental studies of pseudo-EMD. Pseudo-EMD can be consistently and non-invasively detected with this esophageal doppler device. The device is as reliable as a micromanometer tipped aortic arch catheter in detecting pseudo-EMD. The doppler device could potentially be useful in improving recognition of near cardiac arrest in pre-hospital and emergency department settings. Further research on the utility of this device in other models of low-flow states should be performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ein 6,5 Jahre alter Cavalier King Charles Spaniel wurde mit einer seit 6 Wochen bestehenden Lahmheit der linken Vorderextremität vorgestellt. In der klinischen Untersuchung wurden eine Abduktion der linken Vordergliedmaße, eine Atrophie des M. infraspinatus, M. supraspinatus und M. deltoideus, eine Dolenz bei Palpation bzw. Flexion des Schultergelenks sowie eine mittelgradige Hangbeinlahmheit mit charakteristischer Aussenrotation der Schulter festgestellt. Als Diagnose wurde eine Kontraktur des M. infraspinatus gestellt, und die komplette Tenektomie seiner Ansatzsehne führte zur Wiederherstellung der normalen Gliedmaßenfunktion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exostosis of the os pubis causing haematuria, and potentially cystorrhexis, in horses has not been described in the literature. In this study, 2 geldings that suffered from exercise-induced haematuria caused by an osteochondroma of the os pubis, and the assessment of 41 cadaveric pubic bones are reported on. The anatomy of the os pubis is highly variable. The prevalence of exostosis in the os pubis appears to be higher in male horses. Palpation and ultrasonography of the pelvis per rectum and cystoscopy are valuable diagnostic tools. Depending on the extent of changes in the bladder wall, surgical removal of the exostosis should be considered in order to prevent cystorrhexis. In horses that present with haematuria, closer assessment of the os pubis for the presence of an exostosis is warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 39-year-old white man presented with a swollen left upper eyelid secondary to progressive acute bacterial rhinosinusitis (ABRS). Physical examination found a 40% reduction in vision in the left eye and right-sided erythematous temporal swelling with tenderness to palpation. Computed tomography revealed the presence of an inflammatory lesion in the left orbit. Duplex ultrasonography demonstrated a thrombotic occlusion in the right superficial temporal vein (STV). For treatment of the complicated ARBS, the patient received intravenous antibiotics and underwent surgery. The STV thrombophlebitis was treated with low-molecular-weight heparin. Postoperatively, the patient recovered completely and his vision normalized; 10 days later, duplex ultrasonography showed a patent STV. The development of contralateral STV thrombophlebitis is conceivably facilitated by venous anastomoses of the scalp in the front of the head. As a result, embolic spread would be a possible complication of infectious ABRS foci communicating with intraorbital and pericranial veins. To the best of our knowledge, this is the first reported case of such a complication of ARBS in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-cage housing systems for laying hens such as aviaries provide greater freedom to perform species-specific behavior and thus are thought to improve welfare of the birds; however, aviaries are associated with a high prevalence of keel bone damage (fractures and deviations), which is a major welfare problem in commercial laying hens. Potential causes of keel bone damage are falls and collisions with internal housing structures that occur as birds move between tiers or perches in the aviary. The aim of this study was to investigate the scope for reducing keel bone damage by reducing falls and collisions through modifications of aviary design. Birds were kept in 20 pens in a laying hen house (225 hens per pen) that were assigned to four different treatments (n = 5 pens per treatment group) including (1) control pens and pens modified by the addition of (2) perches, (3) platforms and (4) ramps. Video recordings at 19, 22, 29, 36 and 43 weeks of age were used to analyze controlled movements and falls (including details on occurrence of collision, cause of fall, height of fall and behavior after fall) during the transitional dusk and subsequent dark phase. Palpation assessments (focusing on fractures and deviations) using 20 focal hens per pen were conducted at 18, 20, 23, 30, 37, 44, 52 and 60 weeks of age. In comparison to the control group, we found 44% more controlled movements in the ramp (P = 0.003) and 47% more controlled movements in the platform treatments (P = 0.014) as well as 45% fewer falls (P = 0.006) and 59% fewer collisions (P < 0.001) in the ramp treatment. There were no significant differences between the control and perch treatments. Also, at 60 weeks of age, 23% fewer fractured keel bones were found in the ramp compared with the control treatment (P = 0.0053). After slaughter at 66 weeks of age, no difference in keel bone damage was found between treatment groups and the prevalence of fractures increased to an average of 86%. As a potential mechanism to explain the differences in locomotion, we suggest that ramps facilitated movement in the vertical plane by providing a continuous path between the tiers and thus supported more natural behavior (i.e. walking and running) of the birds. As a consequence of reducing events that potentially damage keel bones, the installation of ramps may have reduced the prevalence of keel fractures for a major portion of the flock cycle. We conclude that aviary design and installation of specific internal housing structures (i.e. ramps and platforms) have considerable potential to reduce keel bone damage of laying hens in aviary systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la interacción con el entorno que nos rodea durante nuestra vida diaria (utilizar un cepillo de dientes, abrir puertas, utilizar el teléfono móvil, etc.) y en situaciones profesionales (intervenciones médicas, procesos de producción, etc.), típicamente realizamos manipulaciones avanzadas que incluyen la utilización de los dedos de ambas manos. De esta forma el desarrollo de métodos de interacción háptica multi-dedo dan lugar a interfaces hombre-máquina más naturales y realistas. No obstante, la mayoría de interfaces hápticas disponibles en el mercado están basadas en interacciones con un solo punto de contacto; esto puede ser suficiente para la exploración o palpación del entorno pero no permite la realización de tareas más avanzadas como agarres. En esta tesis, se investiga el diseño mecánico, control y aplicaciones de dispositivos hápticos modulares con capacidad de reflexión de fuerzas en los dedos índice, corazón y pulgar del usuario. El diseño mecánico de la interfaz diseñada, ha sido optimizado con funciones multi-objetivo para conseguir una baja inercia, un amplio espacio de trabajo, alta manipulabilidad y reflexión de fuerzas superiores a 3 N en el espacio de trabajo. El ancho de banda y la rigidez del dispositivo se han evaluado mediante simulación y experimentación real. Una de las áreas más importantes en el diseño de estos dispositivos es el efector final, ya que es la parte que está en contacto con el usuario. Durante este trabajo se ha diseñado un dedal de bajo peso, adaptable a diferentes usuarios que, mediante la incorporación de sensores de contacto, permite estimar fuerzas normales y tangenciales durante la interacción con entornos reales y virtuales. Para el diseño de la arquitectura de control, se estudiaron los principales requisitos para estos dispositivos. Entre estos, cabe destacar la adquisición, procesado e intercambio a través de internet de numerosas señales de control e instrumentación; la computación de equaciones matemáticas incluyendo la cinemática directa e inversa, jacobiana, algoritmos de detección de agarres, etc. Todos estos componentes deben calcularse en tiempo real garantizando una frecuencia mínima de 1 KHz. Además, se describen sistemas para manipulación de precisión virtual y remota; así como el diseño de un método denominado "desacoplo cinemático iterativo" para computar la cinemática inversa de robots y la comparación con otros métodos actuales. Para entender la importancia de la interacción multimodal, se ha llevado a cabo un estudio para comprobar qué estímulos sensoriales se correlacionan con tiempos de respuesta más rápidos y de mayor precisión. Estos experimentos se desarrollaron en colaboración con neurocientíficos del instituto Technion Israel Institute of Technology. Comparando los tiempos de respuesta en la interacción unimodal (auditiva, visual y háptica) con combinaciones bimodales y trimodales de los mismos, se demuestra que el movimiento sincronizado de los dedos para generar respuestas de agarre se basa principalmente en la percepción háptica. La ventaja en el tiempo de procesamiento de los estímulos hápticos, sugiere que los entornos virtuales que incluyen esta componente sensorial generan mejores contingencias motoras y mejoran la credibilidad de los eventos. Se concluye que, los sistemas que incluyen percepción háptica dotan a los usuarios de más tiempo en las etapas cognitivas para rellenar información de forma creativa y formar una experiencia más rica. Una aplicación interesante de los dispositivos hápticos es el diseño de nuevos simuladores que permitan entrenar habilidades manuales en el sector médico. En colaboración con fisioterapeutas de Griffith University en Australia, se desarrolló un simulador que permite realizar ejercicios de rehabilitación de la mano. Las propiedades de rigidez no lineales de la articulación metacarpofalange del dedo índice se estimaron mediante la utilización del efector final diseñado. Estos parámetros, se han implementado en un escenario que simula el comportamiento de la mano humana y que permite la interacción háptica a través de esta interfaz. Las aplicaciones potenciales de este simulador están relacionadas con entrenamiento y educación de estudiantes de fisioterapia. En esta tesis, se han desarrollado nuevos métodos que permiten el control simultáneo de robots y manos robóticas en la interacción con entornos reales. El espacio de trabajo alcanzable por el dispositivo háptico, se extiende mediante el cambio de modo de control automático entre posición y velocidad. Además, estos métodos permiten reconocer el gesto del usuario durante las primeras etapas de aproximación al objeto para su agarre. Mediante experimentos de manipulación avanzada de objetos con un manipulador y diferentes manos robóticas, se muestra que el tiempo en realizar una tarea se reduce y que el sistema permite la realización de la tarea con precisión. Este trabajo, es el resultado de una colaboración con investigadores de Harvard BioRobotics Laboratory. ABSTRACT When we interact with the environment in our daily life (using a toothbrush, opening doors, using cell-phones, etc.), or in professional situations (medical interventions, manufacturing processes, etc.) we typically perform dexterous manipulations that involve multiple fingers and palm for both hands. Therefore, multi-Finger haptic methods can provide a realistic and natural human-machine interface to enhance immersion when interacting with simulated or remote environments. Most commercial devices allow haptic interaction with only one contact point, which may be sufficient for some exploration or palpation tasks but are not enough to perform advanced object manipulations such as grasping. In this thesis, I investigate the mechanical design, control and applications of a modular haptic device that can provide force feedback to the index, thumb and middle fingers of the user. The designed mechanical device is optimized with a multi-objective design function to achieve a low inertia, a large workspace, manipulability, and force-feedback of up to 3 N within the workspace; the bandwidth and rigidity for the device is assessed through simulation and real experimentation. One of the most important areas when designing haptic devices is the end-effector, since it is in contact with the user. In this thesis the design and evaluation of a thimble-like, lightweight, user-adaptable, and cost-effective device that incorporates four contact force sensors is described. This design allows estimation of the forces applied by a user during manipulation of virtual and real objects. The design of a real-time, modular control architecture for multi-finger haptic interaction is described. Requirements for control of multi-finger haptic devices are explored. Moreover, a large number of signals have to be acquired, processed, sent over the network and mathematical computations such as device direct and inverse kinematics, jacobian, grasp detection algorithms, etc. have to be calculated in Real Time to assure the required high fidelity for the haptic interaction. The Hardware control architecture has different modules and consists of an FPGA for the low-level controller and a RT controller for managing all the complex calculations (jacobian, kinematics, etc.); this provides a compact and scalable solution for the required high computation capabilities assuring a correct frequency rate for the control loop of 1 kHz. A set-up for dexterous virtual and real manipulation is described. Moreover, a new algorithm named the iterative kinematic decoupling method was implemented to solve the inverse kinematics of a robotic manipulator. In order to understand the importance of multi-modal interaction including haptics, a subject study was carried out to look for sensory stimuli that correlate with fast response time and enhanced accuracy. This experiment was carried out in collaboration with neuro-scientists from Technion Israel Institute of Technology. By comparing the grasping response times in unimodal (auditory, visual, and haptic) events with the response times in events with bimodal and trimodal combinations. It is concluded that in grasping tasks the synchronized motion of the fingers to generate the grasping response relies on haptic cues. This processing-speed advantage of haptic cues suggests that multimodalhaptic virtual environments are superior in generating motor contingencies, enhancing the plausibility of events. Applications that include haptics provide users with more time at the cognitive stages to fill in missing information creatively and form a richer experience. A major application of haptic devices is the design of new simulators to train manual skills for the medical sector. In collaboration with physical therapists from Griffith University in Australia, we developed a simulator to allow hand rehabilitation manipulations. First, the non-linear stiffness properties of the metacarpophalangeal joint of the index finger were estimated by using the designed end-effector; these parameters are implemented in a scenario that simulates the behavior of the human hand and that allows haptic interaction through the designed haptic device. The potential application of this work is related to educational and medical training purposes. In this thesis, new methods to simultaneously control the position and orientation of a robotic manipulator and the grasp of a robotic hand when interacting with large real environments are studied. The reachable workspace is extended by automatically switching between rate and position control modes. Moreover, the human hand gesture is recognized by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of the approximation-to-the-object phase and then mapped to the robotic hand actuators. These methods are validated to perform dexterous manipulation of objects with a robotic manipulator, and different robotic hands. This work is the result of a research collaboration with researchers from the Harvard BioRobotics Laboratory. The developed experiments show that the overall task time is reduced and that the developed methods allow for full dexterity and correct completion of dexterous manipulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation of behavioural patterns that form a basis for termite control in the Australasian region was undertaken using laboratory colonies of the subterranean termite Reticulitermes santonensis (Feytaud). The study attempted to build a picture of the behavioural elements of individuals in a colony and based on this, trophallaxis, aggression and cannibalism were investigated in detail. Preliminary study of food transmission showed that 'workers' played a major role in the distribution of food. It was found, that among factors responsible for release of trophallactic behaviour the presence of 'right odour' between participants was important. It also appeared that the role taken by individuals depended on whether they were hungry or fully fed. Antennal palpation was shown by donors and acceptors alike and this seemed to be excitatory in function. Introduction of aliens into nests elicited aggression and these aliens were often killed. Factors eliciting aggression were investigated and colony odour was found to be important. Further investigations revealed that development of colony odour was governed by genetical and environmental mechanisms. Termite response to injury and death was also governed by odour. In the case of injury either the fresh haemolymph from the wound or some component of the haemolymph evoked cannibalism. Necrophagic behaviour was found to be released by fatty acids found in the corpses. Finally, the response of colonies to nestmates carrying arsenic trioxide was investigated. It was found that living and freshly dead arsenic-carrying nestmates were treated like normal nestmates, resulting in high initial mortality. However, poisoned cadavers soon became repellant and were buried thus preventing further spread of the poison to the rest of the colony. This suggested that complete control of subterranean termites by arsenic trioxide is unlikely to be fully effective, especially in those species which are capable of developing secondary reproductives from survivors and thus rebuilding the community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the work carried out on the development of a novel digit actuator system with tactile perception feedback to a user and demonstrated as a master-slave system. For the tactile surface of the digit, contrasting sensor elements of resistive strain gauges and optical fibre Bragg grating sensors were evaluated. A distributive tactile sensing system consisting of optimised neural networking schemes was developed, resulting in taxonomy of artificial touch. The device is suitable for use in minimal invasive surgical (MIS) procedures as a steerable tip and a digit constructed wholly from polymers makes it suitable for use in Magnetic Resonance Imaging (MRI) environments enabling active monitoring of the patient during a procedure. To provide a realistic template of the work the research responded to the needs of two contrasting procedures: palpation of the prostate and endotracheal intubation in anaesthesia where the application of touch sense can significantly assist navigation. The performance of the approach was demonstrated with an experimental digit constructed for use in the laboratory in phantom trials. The phantom unit was developed to resemble facets of the clinical applications and digit system is able to evaluate reactive force distributions acting over the surface of the digit as well as different descriptions of contact and motion relative to the surface of the lumen. Completing control of the digit is via an instrumented glove, such that the digit actuates in sympathy with finger gesture and tactile information feedback is achieved by a combination of the tactile and visual means.