989 resultados para PULMONARY ARTERIAL-HYPERTENSION
Resumo:
OBJECTIVES: The aim of this study was to evaluate right ventricular (RV) and left ventricular function and pulmonary circulation in chronic mountain sickness (CMS) patients with rest and stress echocardiography compared with healthy high-altitude (HA) dwellers. BACKGROUND: CMS or Monge's disease is defined by excessive erythrocytosis (hemoglobin >21 g/dl in males, 19 g/dl in females) and severe hypoxemia. In some cases, a moderate or severe increase in pulmonary pressure is present, suggesting a similar pathogenesis of pulmonary hypertension. METHODS: In La Paz (Bolivia, 3,600 m sea level), 46 CMS patients and 40 HA dwellers of similar age were evaluated at rest and during semisupine bicycle exercise. Pulmonary artery pressure (PAP), pulmonary vascular resistance, and cardiac function were estimated by Doppler echocardiography. RESULTS: Compared with HA dwellers, CMS patients showed RV dilation at rest (RV mid diameter: 36 ± 5 mm vs. 32 ± 4 mm, CMS vs. HA, p = 0.001) and reduced RV fractional area change both at rest (35 ± 9% vs. 43 ± 9%, p = 0.002) and during exercise (36 ± 9% vs. 43 ± 8%, CMS vs. HA, p = 0.005). The RV systolic longitudinal function (RV-S') decreased in CMS patients, whereas it increased in the control patients (p < 0.0001) at peak stress. The RV end-systolic pressure-area relationship, a load independent surrogate of RV contractility, was similar in CMS patients and HA dwellers with a significant increase in systolic PAP and pulmonary vascular resistance in CMS patients (systolic PAP: 50 ± 12 mm Hg vs. 38 ± 8 mm Hg, CMS vs. HA, p < 0.0001; pulmonary vascular resistance: 2.9 ± 1 mm Hg/min/l vs. 2.2 ± 1 mm Hg/min/l, p = 0.03). Both groups showed comparable systolic and diastolic left ventricular function both at rest and during stress. CONCLUSIONS: Comparable RV contractile reserve in CMS and HA suggests that the lower resting values of RV function in CMS may represent a physiological adaptation to chronic hypoxic conditions rather than impaired RV function. (Chronic Mountain Sickness, Systemic Vascular Function [CMS]; NCT01182792).
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 +/- 0.9 days; 2369 +/- 491 g) were randomly assigned to receive saline (placebo, P) or the AT(1) receptor (AT(1)-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO(2) = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT(1)-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT(1)-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT(1)-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT(1)-R staining, but C animals showed weak iNOS and AT(1)-R staining. Macrophages of L and P animals showed moderate and weak AT(2)-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT(1)-R blockade. We suggest that AT(1)-R blockade might act through AT(2)-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
Background: Pulmonary hypertension is associated with a worse prognosis after cardiac transplantation. The pulmonary hypertension reversibility test with sodium nitroprusside (SNP) is associated with a high rate of systemic arterial hypotension, ventricular dysfunction of the transplanted graft and high rates of disqualification from transplantation. Objective: This study was aimed at comparing the effects of sildenafil (SIL) and SNP on hemodynamic, neurohormonal and echocardiographic variables during the pulmonary reversibility test. Methods: The patients underwent simultaneously right cardiac catheterization, echocardiography, BNP measurement, and venous blood gas analysis before and after receiving either SNP (1 - 2 mu g/kg/min) or SIL (100 mg, single dose). Results: Both drugs reduced pulmonary hypertension, but SNP caused a significant systemic hypotension (mean blood pressure - MBP: 85.2 vs. 69.8 mm Hg; p < 0.001). Both drugs reduced cardiac dimensions and improved left cardiac function (SNP: 23.5 vs. 24.8%, p = 0.02; SIL: 23.8 vs. 26%, p < 0.001) and right cardiac function (SIL: 6.57 +/- 2.08 vs. 8.11 +/- 1.81 cm/s, p = 0.002; SNP: 6.64 +/- 1.51 vs. 7.72 +/- 1.44 cm/s, p = 0.003), measured through left ventricular ejection fraction and tissue Doppler, respectively. Sildenafil, contrary to SNP, improved venous oxygen saturation, measured on venous blood gas analysis. Conclusion: Sildenafil and SNP are vasodilators that significantly reduce pulmonary hypertension and cardiac geometry, in addition to improving biventricular function. Sodium nitroprusside, contrary to SIL, was associated with systemic arterial hypotension and worsening of venous oxygen saturation. (Arq Bras Cardiol 2012;99(3):848-856)
Resumo:
Recent studies have recognised the importance of pulmonary hypertension (PH) in sickle cell disease (SCD). The aim of this study was to determine the prevalence and prognostic impact of PH and its features in patients with SCD. 80 patients with SCD underwent baseline clinical evaluation, laboratory testing, 6-min walk tests (6MWTs) and echocardiography. Patients with a peak tricuspid regurgitant jet velocity (TRV) of >= 2.5 m.s(-1) were further evaluated through right heart catheterisation (RHC) to assure the diagnosis of PH. Our study evidenced a 40% prevalence of patients with elevated TRV at echocardiography. RHC (performed in 25 out of 32 patients) confirmed PH in 10% (95% CI 3.4-16.5%) of all patients, with a prevalence of post-capillary PH of 6.25% (95% CI 0.95-11.55%) and pre-capillary PH of 3.75% (95% CI -0.4-7.9%). Patients with PH were older, had worse performance in 6MWTs, and more pronounced anaemia, haemolysis and renal dysfunction. Survival was shorter in patients with PH. Our study reinforced the use of echocardiography as a screening tool for PH in SCD and the mandatory role of RHC for proper diagnosis. Our findings confirmed the prognostic significance of PH in SCD as its association to pronounced haemolytic profile.
Resumo:
Objective: To compare two models of pulmonary hypertension (monocrotaline and monocrotaline+pneumonectomy) regarding hemodynamic severity, structure of pulmonary arteries, inflammatory markers (IL-1 and PDGF), and 45-day survival. Methods: We used 80 Sprague-Dawley rats in two study protocols: structural analysis; and survival analysis. The rats were divided into four groups: control; monocrotaline (M), pneumonectomy (P), and monocrotaline+pneumonectomy (M+P). In the structural analysis protocol, 40 rats (10/group) were catheterized for the determination of hemodynamic variables, followed by euthanasia for the removal of heart and lung tissue. The right ventricle (RV) was dissected from the interventricular septum (IS), and the ratio between RV weight and the weight of the left ventricle (LV) plus IS (RV/LV+IS) was taken as the index of RV hypertrophy. In lung tissues, we performed histological analyses, as well as using ELISA to determine IL-1 and PDGF levels. In the survival protocol, 40 animals (10/group) were followed for 45 days. Results: The M and M+P rats developed pulmonary hypertension, whereas the control and P rats did not. The RV/LV+IS ratio was significantly higher in M+P rats than in M rats, as well as being significantly higher in M and M+P rats than in control and P rats. There were no significant differences between the M and M+P rats regarding the area of the medial layer of the pulmonary arteries; IL-1 and PDGF levels; or survival. Conclusions: On the basis of our results, we cannot conclude that the monocrotaline+pneumonectomy model is superior to the monocrotaline model.
Resumo:
Background: Balloon pulmonary angioplasty (BPA) has recently been developed as an alternative and less- invasive treatment strategy for chronic thromboembolic pulmonary hypertension (CTEPH), but therapeutic efficacy and technical safety of the technique have to be established. Aim: effects of BPA on patients with inoperable disease or residual pulmonary hypertension (PH) after pulmonary endarterectomy (PEA). Methods: From June 2015 to September 2019 we enrolled symptomatic (NYHA ≥ II) inoperable CTEPH patients and patients with residual PH after PEA. At baseline, immediately before the first BPA session and 3-6 months after last BPA session all patients underwent clinical evaluation, six-minute walking distance and right heart catheterization. For comparisons Friedman test (with Bonferroni post-hoc pairwise analysis) was used. Survival curves were done with Kaplan Meier method. Results: Forty-seven patients [male 45%, median age 68 (51-74) years, 40 inoperable and 7 with residual PH after PEA] were treated for a total of 136 sessions (median number of sessions for each patient: 2); during each session we treated 2 (2-3) vessels; BPA significantly improved symptoms (NYHA III-IV from 85 to 42%), exercise capacity (from 425 to 446 m) and hemodynamic profile (reduction of mean pulmonary arterial pressure from 41 to 35 mmHg and of pulmonary vascular resistance from 7.1 to 4.7 WU). Five pulmonary artery dissection and 2 hemoptysis with clinical impairment were documented; 33 patients had lung injury (radiographic opacity with/without hemoptysis and/or hypoxemia), 7 patients had access site complications. Five patients died during follow-up (none within 30 days from the procedure) because of sepsis (1), heart failure (1), cancer (1), arrhythmic storm (1) and sudden death in a patient with severe coronary atherosclerosis (1). Conclusions: BPA is a safe and effective treatment able to improve symptoms and hemodynamic profile in inoperable CTEPH patients and in patients with residual PH after PEA.
Resumo:
Matsumoto T, Tostes RC, Webb RC. Uridine adenosine tetraphosphate-induced contraction is increased in renal but not pulmonary arteries from DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 301: H409-H417, 2011. First published May 6, 2011; doi:10.1152/ajpheart.00084.2011.-Uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived contracting factor. Up(4)A contains both purine and pyrimidine moieties, which activate purinergic (P2)X and P2Y receptors. However, alterations in the vasoconstrictor responses to Up(4)A in hypertensive states remain unclear. The present study examined the effects of Up(4)A on contraction of isolated renal arteries (RA) and pulmonary arteries (PA) from DOCA-salt rats using isometric tension recording. RA from DOCA-salt rats exhibited increased contraction to Up(4)A versus arteries from control uninephrectomized rats in the absence and presence of N(G)-nitro-L-arginine (nitric oxide synthase inhibitor). On the other hand, the Up(4)A-induced contraction in PA was similar between the two groups. Up(4)A-induced contraction was inhibited by suramin (nonselective P2 antagonist) but not by diinosine pentaphosphate pentasodium salt hydrate (Ip5I; P2X(1) antagonist) in RA from both groups. Furthermore, 2-thiouridine 5`-triphosphate tetrasodium salt (2-Thio-UTP; P2Y(2) agonist)-, uridine-5`-(gamma-thio)-triphosphate trisodium salt (UTP gamma S; P2Y(2)/P2Y(4) agonist)-, and 5-iodouridine-5`-O-diphosphate trisodium salt (MRS 2693; P2Y(6) agonist)-induced contractions were all increased in RA from DOCA-salt rats. Protein expression of P2Y(2)-, P2Y(4)-, and P2Y(6) receptors in RA was similar between the two groups. In DOCA-salt RA, the enhanced Up(4)A-induced contraction was reduced by PD98059, an ERK pathway inhibitor, and Up(4)Astimulated ERK activation was increased. These data are the first to indicate that Up(4)A-induced contraction is enhanced in RA from DOCA-salt rats. Enhanced P2Y receptor signaling and activation of the ERK pathway together represent a likely mechanism mediating the enhanced Up(4)A-induced contraction. Up(4)A might be of relevance in the pathophysiology of vascular tone regulation and renal dysfunction in arterial hypertension.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objectives: Up-regulated matrix metalloproteinases may be involved in the development of cardiomyocyte injury and the degradation of troponin associated with acute pulmonary thromboembolism. We examined whether pretreatment with doxycycline (a nonspecific matrix metalloproteinase inhibitor) protects against cardiomyocyte injury associated with acute pulmonary thromboembolism. Design: Controlled animal study. Setting: University research laboratory. Subjects: Mongrel dogs. Interventions: Anesthetized animals received doxycycline (10 mg/kg intravenously) or saline and acute pulmonary thromboembolism was induced with autologous blood clots injected into the right atrium. Control animals received doxycycline (or saline). Measurements and Main Results: Hemodynamic measurements were performed, and acute pulmonary thromboembolism increased baseline mean pulmonary arterial pressure and pulmonary vascular resistance by approximately 160% and 362%, respectively (both p<.05), 120 mins after acute pulmonary thromboembolism. Pretreatment with doxycycline attenuated these increases (to 125% and 232%, respectively; both p<.05). Although acute pulmonary thromboembolism tended to increase the right ventricle maximum rate of isovolumic pressure development and the maximum rate of isovolumic pressure decay, doxycycline produced no effects on these parameters. Gelatin zymograms of right ventricle showed that acute pulmonary thromboembolism marginally increased matrix metalloproteinase-9 (but not matrix metalloproteinase-2) levels in the right ventricle. A fluorometric assay to assess net matrix metalloproteinase activities showed that acute pulmonary thromboembolism increased matrix metalloproteinase activities in the right ventricle by >100% (p<.05), and this finding was confirmed by in situ zymography of the right ventricle. Doxycycline attenuated acute pulmonary thromboembolism-induced increases in right ventricle matrix metalloproteinase activities. Acute pulmonary thromboembolism induced neutrophil accumulation in the right ventricle, as estimated by myeloperoxidase activity, and doxycycline blunted this effect (p<.05). Serum cardiac troponin I concentrations, which reflect cardiomyocyte injury, increased after acute pulmonary thromboembolism, and this increase was attenuated by pretreatment with doxycycline (p<.05). Conclusions: We found evidence supporting the idea that acute pulmonary thromboembolism is associated with increased matrix metalloproteinase activities in the right ventricle, which may lead to degradation of sarcomeric proteins, including cardiac troponin I. Inhibition of matrix metalloproteinases may be an effective therapeutic intervention in the management of acute pulmonary thromboembolism. (Crit Care Med 2011; 39: 349-356)
Resumo:
Background: The diagnosis of acute pulmonary thromboembolism (APT) and its severity is challenging. No previous study has examined whether there is a linear relation between plasma DNA concentrations and the severity of APT. We examined this hypothesis in anesthetized dogs. We also examined the changes in plasma DNA concentrations in microspheres lung embolization and whether the therapy of APT with nitrite could modify APT-induced changes in plasma DNA concentrations. In vitro DNA release from blood clots was also studied. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. A group of dogs received 300 pm microspheres into the inferior vena cava to produce similar pulmonary hypertension. Another group of dogs received 6.75 mu mol/kg nitrite after APT with blood clots of 5 ml/kg. Hemodynamic evaluations were carried out for 120 min. DNA was extracted from plasma samples using QIAamp DNA Blood Mini Kit and quantified using Quant-iT (TM) PicoGreen (R) dsDNA detection kit at baseline and 120 min after APT. Results: APT produced dose-dependent increases in plasma DNA concentrations. which correlated positively with pulmonary vascular resistance (P=0.002, r=0.897) and with mean pulmonary arterial pressure (P=0.006, r=0.856). Conversely, lung embolization with microspheres produced no significant changes in plasma DNA concentrations. While nitrite attenuated APT-induced pulmonary hypertension, it produced no changes in plasma DNA concentrations. Blood clots released dose-dependent amounts of DNA in vitro. Conclusions: Cell-free DNA concentrations increase in proportion to the severity of APT, probably as a result of increasing amounts of thrombi obstructing the pulmonary vessels. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: Characterization of the structural changes occurring in the pulmonary arteries resulting from surgically produced congenital diaphragmatic hernia in rabbits, with particular emphasis on the preventive effects of prenatal tracheal ligation or administration of intra-amniotic dexamethasone or surfactant. METHODS: Twenty rabbit fetuses underwent surgical creation of a left-sided congenital diaphragmatic hernia on the 24th or 25th gestational day. They were divided according to the following procedures: congenital diaphragmatic hernia (n = 5), congenital diaphragmatic hernia plus tracheal ligation (n = 5), congenital diaphragmatic hernia plus intra-amniotic administration of dexamethasone 0.4 mg (n = 5) or surfactant (Curosurf 40 mg, n = 5). On gestational day 30, all the fetuses were delivered by caesarean section and killed. A control group consisted of five nonoperated fetuses. Histomorphometric analysis of medial thickness, cell nuclei density, and elastic fiber density of pulmonary arterial walls was performed. RESULTS: Arteries with an external diameter > 100 mum have a decreased medial thickness, lower cell nuclei density, and greater elastic fiber density when compared with arteries with external diameter <= 100 mum. Congenital diaphragmatic hernia promoted a significant decrease in medial thickness and an increase in cell nuclei density in artery walls with external diameter > 100 mum. Prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes. In arteries with external diameter <= 100 mum, congenital diaphragmatic hernia promoted a significant increase in medial thickness and in cell nuclei density and a decrease in elastic fiber density. The prenatal treatments with tracheal ligation or intra-amniotic administration of dexamethasone or surfactant prevented these changes, although no effect was observed in elastic fiber density in the congenital diaphragmatic hernia plus dexamethasone group. CONCLUSIONS: Congenital diaphragmatic hernia promoted different structural changes for large or small arteries. The prenatal intra-amniotic administration of dexamethasone or surfactant had positive effects on the lung structural changes promoted by congenital diaphragmatic hernia, and these effects were comparable to the changes induced by tracheal ligation.
Resumo:
Pulmonary hypertension (PH) is a complex disease leading, in its advance form, to a decreased quality of life and early mortality. In the early stage, non specific signs and symptoms are the rule. The diagnosis is often missed, leaving the patient alone to face the disease and its repercussion on his daily life. This article reviews the main PH causes and predisposing conditions. Signs and symptoms suggesting the diagnosis are reviewed as well as conditions recognised at high risk for the disease. The key role of echocardiography in establishing the diagnosis, assessing PH severity, cardiac repercussions and/or potential aetiologies, is addressed. Finally the importance of a multidisciplinary approach is recommended.
Resumo:
High mortality in newborn babies with congenital diaphragmatic hernia (CDH) is principally due to persistent pulmonary hypertension. ATP-dependent potassium (K(ATP)) channels might modulate pulmonary vascular tone. We have assessed the effects of Pinacidil, a K(ATP) channel opener, and glibenclamide (GLI), a K(ATP) channel blocker, in near full-term lambs with and without CDH. In vivo, pulmonary hemodynamics were assessed by means of pressure and blood flow catheters. In vitro, we used isolated pulmonary vessels and immunohistochemistry to detect the presence of K(ATP) channels in pulmonary tissue. In vivo, pinacidil (2 mg) significantly reduced pulmonary vascular resistance (PVR) in both controls and CDH animals. GLI (30 mg) significantly increased pulmonary arterial pressure (PAP) and PVR in control animals only. In vitro, pinacidil (10 microM) relaxed, precontracted arteries from lambs with and without CDH. GLI (10(-5) microM) did not raise the basal tone of vessels. We conclude that activation of K(ATP) channels could be of interest to reduce pulmonary vascular tone in fetal lambs with CDH, a condition often associated with persistent pulmonary hypertension of the newborn.