883 resultados para PHYLLOGORGIA-DILATATA ESPER
Resumo:
Foraminiferal assemblages in sediments from Hole 543A suggest that toward the end of the Cretaceous there was an oscillating carbonate compensation depth (CCD) in the western Central Atlantic. Changing assemblages of siliceous agglutinated and calcareous foraminifers reflect the changing depositional environment, from a ridge crest environment during Campanian time to a deep abyssal environment during Maestrichtian time.
Resumo:
Benthic foraminifers were studied in 99 samples collected from the lower 200 m of Hole 765C. The studied section ranges from the Tithonian to Aptian, and benthic foraminifers can be subdivided into five assemblages on the basis of faunal diversity and stratigraphic ranges of distinctive species. Compared with deep-water assemblages from Atlantic DSDP sites and Poland, assemblages from the Argo Abyssal Plain display a higher diversity of agglutinated forms, which comprise the autochthonous assemblages. Assemblages at the base of Hole 765C are wholly composed of agglutinated forms, reflecting deposition beneath the carbonate compensation depth (CCD). Most calcareous benthic species are found in turbidite layers, and the presence of an upper Valanginian Praedorothia praehauteriviana Assemblage may indicate deposition at or just below the CCD. The P. praehauteriviana Assemblage from Hole 765C is the temporal equivalent of similar assemblages from DSDP Holes 534A, 416A, 370, 105, and 101 in the Atlantic Ocean and Hole 306 in the Pacific Ocean. Stratigraphic ranges of cosmopolitan agglutinated species at Site 765 generally overlap with their reported ranges in the Atlantic and in the bathyal flysch sequences of the Carpathians; however, several species from Hole 765C have not been previously reported from Uppermost Jurassic to Lower Cretaceous abyssal sediments.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
1. Late glacial and postglacial sediments from three former lakes in the Lake Garda area (Southern Alps) were investigated. 2. The pollen diagram from Bondone (1550 m) shows an older phase rich in NAP. A younger one corresponds with the Younger Dryas time according to two radiocarbon determinations. In the Preboreal no climatic deterioration could be found. 3. At first plants, which are nowadays typical for snow-ground, pioneer and dwarf shrub associations, immigrated into the surroundings of Bondone. In Alleröd times larch and pine appeared as the first trees. At the beginning of the Preboreal dense forest existed in that region. During the Alleröd timber line was at about 1500 m. 4. In the pollen diagrams from Saltarino (194 m) and Fiavè (654 m) an oldest period rich in NAP is followed by two stadial and two interstadial phases. Tree birches and larches immigrated during the oldest interstadial phase. 5. In the case of Saltarino and Fiavè only a preliminary dating could be made. A correlation seems to be possible with diagrams published by Zoller as well as with the diagram of Bondone. Discrepances in dating, which arise then, are discussed. According to the two possibilities of dating the youngest stadial is synchronous either with the so-called Piottino stadial or the Younger Dryas time. Consequently the oldest interstadial phase of Saltarino corresponds either with the Bölling or with a pre-Bölling interstadial. The last possibility seems to be more probable. 6. In the southern part of the Lake Garda area reforestation was preceded by a long shrub phase mainly with Juniperus. At about 650 m there was a period with Pinus mugo and only with a small amount of Juniperus before reforestation. A phase with Betula nana well known from areas north of the Alps could nowhere be found. 7. In the area under study larch appeared as the first tree. Lateron it has been the most important constituent of the forests near timber line. Birch, which plays an important role as a pioneer tree in Denmark - for instance at the transition of the pollen zones III/IV - as well as in Southern Germany during Bölling time, was of less importance at the southern border of the Alps. In that area the spreading of Pinus occurred very early causing dense forests. 8. During the last stadial phase (probably Younger Dryas time) dense forests with Pinus and Larix existed at 650 m. In the lower part of the Lake Garda area, however, both thermophilous trees as Quercus and herbs frequently occurred. This leads to the conclusion that during this time tree growth was limited by dryness in lower altitudes of the border of the Southern Alps. Pinus and Juniperus, however, do not show higher values in this period, a fact which cannot yet be explained. 9. A list of plants, which were found in the sediments, is compiled. Helodium lanatum, Dictamnus albus, Mercurialis cf. ovata, Buxus, Cerinthe cf. minor, Onosma, Anthericum and Asphodelus albus are findings, which are of special interest for the history of the flora of that region.
Resumo:
We present an SiF4 separation line, coupled to a laser fluorination system, which allows for an efficient combined silica d18O and d30Si analysis (50 min per sample). The required sample weight of 1.5-2.0 mg allows for high-resolution isotope studies on biogenic opal. Besides analytical tests, the new instrumentation set-up was used to analyse two marine diatom fractions (>63 µm, 10-20 µm) with different diatom species compositions extracted from a Bølling/Allerød-Holocene core section [MD01-2416, North-West (NW) Pacific] to evaluate the palaeoceanographic significance of the diatom isotopic signals and to address isotopic effects related to contamination and species-related isotope effects (vital and environmental effects). While d30Si offsets between the two fractions were not discernible, supporting the absence of species-related silicon isotope effects, systematic offsets occur between the d18O records. Although small, these offsets point to species-related isotope effects, as bias by contamination can be discarded. The new records strengthen the palaeoceanographic history during the last deglaciation in the NW Pacific characterized by a sequence of events with varying surface water structure and biological productivity. With such palaeoceanographic evolution it becomes unlikely that the observed systematic d18O offsets signal seasonal temperature variability. This calls for reconsideration of vital effects, generally excluded to affect d18O measurements.
Resumo:
Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.
Resumo:
The influence of microhabitat type on the diversity and community structure of the harpacticoid copepod fauna associated with a cold-water coral degradation zone was investigated in the Porcupine Seabight (North-East Atlantic). Three substrate types were distinguished: dead fragments of the cold-water coral Lophelia pertusa, skeletons of the glass sponge Aphrocallistes bocagei and the underlying sediment. At the family level, it appears that coral fragments and underlying sediment do not harbour distinctly diVerent assemblages, with Ectinosomatidae, Ameiridae, Pseudotachidiidae, Argestidae and Miraciidae as most abundant. Conclusions on assemblage structure and diversity of the sponge skeletons are limited as only two samples were available. Similarity analysis at species level showed a strong variation in the sediment samples, which did not harbour a distinctly different assemblage in opposition to the coral and sponge samples. Several factors (sediment infill on the hard substrates, mobility of the copepods, limited sample sizes) are proposed to explain this apparent lack of a distinct difference between the microhabitats. Coral fragments and sediment were both characterised by high species diversity and low species dominance, which might indicate that copepod diversity is not substantially influenced by hydrodynamic stress. The additive partitioning of species diversity showed that by adding locations species richness was greatly enhanced. The harpacticoid community in the cold-water coral degradation zone is highly diverse and includes 157 species, 62 genera and 19 families. Information from neighbouring soft-bottom regions is necessary to assess whether total species diversity is increased by the presence of these complex habitatproviding substrates.
Resumo:
Twenty-three sediment intervals from top of Site 650 down to 510 m below seafloor have been studied. Their thicknesses vary between 0.25 m and about 40 m. The studied deposits are turbidites or parts of them except one which is interpreted as an ash-fall layer. The composition of the turbidites signalizes sources from shallow water/coastal areas as well as from deep water levels. Repeated mobilization and displacement seems to have been common. Volcaniclastic material is the dominant component of the whole studied part of Site 650 sedimentary sequence. Ashfall deposits as well as normal open marine sediments are rare.
Resumo:
The distribution, biomass, and diversity of living (Rose Bengal stained) deep-sea benthic foraminifera (>30 µm) were investigated with multicorer samples from seven stations in the Arabian Sea during the intermonsoonal periods in March and in September/October, 1995. Water depths of the stations ranged between 1916 and 4425 m. The distribution of benthic foraminifera was compared with dissolved oxygen, % organic carbon, % calcium carbonate, ammonium, % silica, chloroplastic pigment equivalents, sand content, pore water content of the sediment, and organic carbon flux to explain the foraminiferal patterns and depositional environments. A total of six species-communities comprising 178 living species were identified by principal component analysis. The seasonal comparison shows that at the western stations foraminiferal abundance and biomass were higher during the Spring Intermonsoon than during the Fall Intermonsoon. The regional comparison indicates a distinct gradient in abundance, biomass, and diversity from west to east, and for biomass from north to south. Highest values are recorded in the western part of the Arabian Sea, where the influence of coastal and offshore upwelling are responsible for high carbon fluxes. Estimated total biomass of living benthic foraminifera integrated for the upper 5 cm of the sediment ranged between 11 mg Corg m**-2 at the southern station and 420 mg Corg m**-2 at the western station. Foraminifera in the size range from 30 to 125 ?m, the so-called microforaminifera, contributed between 20 and 65% to the abundance, but only 3% to 28% to the biomass of the fauna. Highest values were found in the central and southern Arabian Sea, indicating their importance in oligotrophic deep-sea areas. The overall abundance of benthic foraminifera is positively correlated with oxygen content and pore volume, and partly with carbon content and chloroplastic pigment equivalents of the sediment. The distributional patterns of the communities seem to be controlled by sand fraction, dissolved oxygen, calcium carbonate and organic carbon content of the sediment, but the critical variables are of different significance for each community.