980 resultados para PCR-AMPLIFICATION
Resumo:
DNA barcodes could be a useful tool for plant conservation. Of particular importance is the ability to identify unknown plant material, such as from customs seizures of illegally collected specimens. Mexican cacti are an example of a threatened group, under pressure because of wild collection for the xeriscaping trade and private collectors. Mexican cacti also provide a taxonomically and geographically coherent group with which to test DNA barcodes. Here, we sample the matK barcode for 528 species of Cactaceae including approximately 75% of Mexican species and test the utility of the matK region for species-level identification. We find that the matK DNA barcode can be used to identify uniquely 77% of species sampled, and 79-87% of species of particular conservation importance. However, this is far below the desired rate of 95% and there are significant issues for PCR amplification because of the variability of primer sites. Additionally, we test the nuclear ITS regions for the cactus subfamily Opuntioideae and for the genus Ariocarpus (subfamily Cactoideae). We observed higher rates of variation for ITS (86% unique for Opuntioideae sampled) but a much lower PCR success, encountering significant intra-individual polymorphism in Ariocarpus precluding the use of this marker in this taxon. We conclude that the matK region should provide useful information as a DNA barcode for Cactaceae if the problems with primers can be addressed, but matK alone is not sufficiently variable to achieve species-level identification. Additional complementary regions should be investigated as ITS is shown to be unsuitable
Resumo:
Physiological and yield traits such as stomatal conductance (mmol m-2s-1), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 (T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerable diversity for this gene with only three cultivars i.e. TJ-83, Marvi and TD-1 being similar to the consensus sequence. All other cultivars showed a unique combination of SNPs. In order to prove a functional link between these polymorphisms and drought tolerance in wheat, it would be necessary to conduct a more detailed study involving directed mutation of this gene and DHN gene expression.
Resumo:
The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.
Resumo:
Background and aims Toxoplasmic retinochoroiditis may recur months or years after the primary infection. Rupture of dormant cysts in the retina is the accepted hypothesis to explain recurrence. Here, the authors present evidence supporting the presence of Toxoplasma gondii in the peripheral blood of immunocompetent patients. Methods Direct observation by light microscopy and by immunofluorescence assay was performed, and results were confirmed by PCR amplification of parasite DNA. Results The authors studied 20 patients from Erechim, Brazil, including acute infected patients, patients with recurrent active toxoplasmic retinochoroiditis, patients with old toxoplasmic retinal scars, and patients with circulating IgG antibodies against T gondii and absence of ocular lesions. Blood samples were analysed, and T gondii was found in the blood of acutely and chronically infected patients regardless of toxoplasmic retinochoroiditis. Conclusions The results indicate that the parasite may circulate in the blood of immunocompetent individuals and that parasitaemia could be associated with the reactivation of the ocular disease.
Resumo:
Identification of all important community members as well as of the numerically dominant members of a community are key aspects of microbial community analysis of bioreactor samples. A systematic study was conducted with artificial consortia to test whether denaturing gradient gel electrophoresis (DGCE) is a reliable technique to obtain such community data under conditions where results would not be affected by differences in DNA extraction efficiency from cells. A total of 27 consortia were established by mixing DNA extracted from Escherichia coli K12, Burkholderia cepacia and Stenotrophomonas maltophilia in different proportions. Concentrations of DNA of single organisms in the consortia were either 0.04, 0.4 or 4 ng/mu l. DGGE-PCR of genomic DNA with primer sets targeted at the V3 and V6-V8 regions of the 16S rDNA failed to detect the three community members in only 7% of consortia, but provided incorrect information about dominance or co-dominance for 85% and 89% of consortia with the primer sets for the V6-V8 and V3 regions, respectively. The high failure rate in detection of dominant B. cepacia with the primers for the V6-V8 region was attributable to a single nucleoticle primer mismatch in the target sequences of both, the forward and reverse primer. Amplification bias in PCR of E. coli and S. maltophilia for the V6-V8 region and for all three organisms for the V3 region occurred due to interference of genomic DNA in PCR-DGGE, since a nested PCR approach, where PCR-DGGE was started from mixtures of 16S rRNA genes of the organisms, provided correct information about the relative abundance of original DNA in the sample. Multiple bands were not observed in pure culture amplicons produced with the V6-V8 primer pair, but pure culture V3 DGGE profiles of E. coli, S. maltophilia and B. cepacia contained 5, 3 and 3 bands, respectively. These results demonstrate DGGE was suitable for identification of all important community members in the three-membered artificial consortium, but not for identification of the dominant organisms in this small community. Multiple DGGE bands obtained for single organisms with the V3 primer pair could greatly confound interpretation of DGGE profiles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Trypanosoma (Megatrypanum) theileri from cattle and trypanosomes of other artiodactyls form a clade of closely related species in analyses using ribosomal sequences. Analysis of polymorphic sequences of a larger number of trypanosomes from broader geographical origins is required to evaluate the Clustering of isolates as suggested by previous studies. Here, we determined the sequences of the spliced leader (SL) genes of 21 isolates from cattle and 2 from water buffalo from distant regions of Brazil. Analysis of SL gene repeats revealed that the 5S rRNA gene is inserted within the intergenic region. Phylogeographical patterns inferred using SL sequences showed at least 5 major genotypes of T. theileri distributed in 2 strongly divergent lineages. Lineage TthI comprises genotypes IA and IB from buffalo and cattle, respectively, from the Southeast and Central regions, whereas genotype IC is restricted to cattle from the Southern region. Lineage Tth II includes cattle genotypes IIA, which is restricted to the North and Northeast, and IIB, found in the Centre, West, North and Northeast. PCR-RFLP of SL genes revealed valuable markers for genotyping T. theileri. The results of this study emphasize the genetic complexity and corroborate the geographical structuring of T. theileri genotypes found in cattle.
Resumo:
We used mixtures of genomic DNA from two genetically distinct isolates from Brazil, 42M and 312M, to investigate how accurately 12-locus microsatellite typing describes the overall genetic diversity and characterizes multilocus haplotypes in multiple-clone Plasmodium vivax infections. We found varying PCR amplification efficiencies of microsatellite alleles; for example, from the same 1:1 mixture of 42M and 312M DNA we amplified predominantly 312M-type alleles at 10 loci and 42M-type alleles at 2 loci. All microsatellite alleles were accurately scored in 1:0.5 and 1:0.25 312M:42M DNA mixtures, even when minor peak heights did not meet previously suggested criteria for minor allele detection in multiple-clone infections. Relative proportions of major and minor alleles were unaffected by multiple displacement amplification of template DNA prior to PCR-based microsatellite typing. Although microsatellite typing may detect minor alleles in clone mixtures, amplification biases may lead to inaccurate assignment of predominant haplotypes in multiple-clone P. vivax infections. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Trypanosoma rangeli infects several mammalian orders but has never confidently been described in Chiroptera, which are commonly parasitized by many trypanosome species. Here, we described trypanosomes from bats captured in Central Brazil identified as T rangeli,.T. dionisii, T cruzimarinkellei and T cruzi. Two isolates, Tra643 from Platyrrhinus lineatus and Tra1719 from Artibeus plamirostris were identified as T rangeli by morphological, biological and molecular methods, and confirmed by phylogenetic analyses. Analysis using SSU rDNA sequences clustered these bat trypanosomes together with T rangeli from other hosts, and separated them from other trypanosomes from bats. Genotyping based on length and sequence polymorphism of PCR-amplified intergenic spliced-leader gene sequences assigned Tra1719 to the lineage A whereas Tra643 was shown to be a new genotype and was assigned to the new lineage E. To our knowledge, these two isolates are the earliest T rangeli from bats and the first isolates from Central Brazil molecularly characterized. Rhodnius stali captured for this study was found infected by T rangeli and T cruzi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.
Resumo:
Human population have a significant number of polymorphic loci, whose use and applications range from construction of linkage maps, to study the evolution of populations, through the determination of paternity, forensic medicine and migration. Currently, STRs (Short Tanden Repeats) markers are considered the major markers for human identification, mainly due to its abundance and high variability because of the fact that they are easily amplifiable by PCR (Polymerase Chain Reaction), work with low amounts of DNA and be capable of automation processes involving fluorescence detection. The creation of regional databases containing allele frequencies of population provide subsidies to increase the reliability of the results of determining the genetic link. This paper aims to obtain a database of allele frequencies of 15 polymorphic molecular loci (D8S1179, D21S11, D7S820, CSF1PO, D19S433, vWA, TPOX, D18S51, D3S1358, TH01, D13S317, D16S539, D2S1338, D5S818 e FGA) in a population classifies as born in the State of Rio Grande do Norte, Brazil, totaling 1100 unrelated individuals. To evaluate the frequency, DNA samples were submitted to PCR amplification, followed by capilarry electrophoresis genetic sequencer. The frequencies identified in this study were compared with brazilian population in general and other states in Brazil. Except for the loci D21S11, D19S433 and D2D1338, the genotypes found were in Hardy-Weinberg equilibrium and no significant differences among the frequencies were found in the populations studied. The most informative loci was D2S1338 and D18S51, and the less informative is the locus TPOX
Resumo:
Beef carcass sponge samples collected between March 2003 and August 2005 at an abattoir in Brazil were surveyed for the presence of Shiga toxin-producing Escherichia coli (STEC). Only one carcass among the 80 tested showed a STEC, stx2-encoding gene by PCR amplification. The frequency of carcass contamination by E. coli during processing was tested at three situations, respectively: preevisceration, postevisceration and postprocessing, during the rain and dry seasons. The prevalence of E. coli at the three points was of 30.0%, 70.0%, 27.5% in the rain season and of 22.5%, 55.0%, 17.5% during the dry season, respectively. The E. coli isolates exhibited a high level (45.0%) of multidrug resistance to two or more antimicrobial agents. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The piezoelectric quartz crystal resonators modified with oligonucleotide probes were used for detection of hepatitis C virus (HCV) in serum. The gold electrodes on either rough or smooth surface crystals were modified with a self-assembled monolayer of cystamine. After activation with glutaraldehyde, either avidin or streptavidin were immobilized and used for attachment of biotinylated DNA probes (four different sequences). Piezoelectric biosensors were used in a flow-through setup for direct monitoring of DNA resulting from the reverse transcriptase-linked polymerase chain reaction (RT-PCR) amplification of the original viral RNA. The samples of patients with hepatitis C were analyzed and the results were compared with the standard RT-PCR procedure (Amplicor test kit of Roche, microwell format with spectrophotometric evaluation). The piezoelectric hybridization assay was completed in 10 min and the same sensing surface was suitable for repeated use. (C) 2004 Elsevier B.V. All rights reserved.