831 resultados para Oxidative addition
Resumo:
The aim of this work was to evaluate possible cytotoxic effects of topical creams and lotions produced with Buriti oil and commercial surfactants on human keratinocytes HaCat and 3T3 embryonic mouse fibroblast cultures. We also aimed to assess the cytotoxicity of the surfactants used to produce the emulsions. The neutral red release (NRR) assay was performed as an in vitro method to evaluate the cytotoxicity of the emulsions in HaCat and 3T3 cell lines and predict potential skin irritation. The Buriti oil emulsions presented low cytotoxicity to the cells at high concentrations and the addition of Vitamin E increased cell viability. Among the surfactant tested, Unitol(R) CE 200F proved to be the most cytotoxic, presenting an IC50 significantly lower than the others. Emulsions formulated with Buriti oil and commercial surfactants could be non irritant to the skin due to their low cytotoxicity, especially when enhanced with vitamin E. When emulsified with Buriti oil, water and Brij 72, Unitol CE200F showed less cytotoxic effects than when tested alone. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The reactive oxygen species (ROS) produced by neutrophils are involved in the pathogenesis of several diseases, for which the intake of antioxidants could benefit patients either as a prophylactic or therapeutic treatment. Propolis is among the known antioxidants, and its chemical composition may vary under the influence of seasonality, which may interfere in its biological properties. This work evaluates the role of seasonality on the production of some important compounds of propolis samples produced monthly from November 2001 through October 2002 as well as the effect of these samples on the oxidative metabolism of stimulated neutrophils, by using both luminol and lucigenin to produce chemiluminescence (CLlum and CLluc, respectively). The cytotoxicity of the most active extracts to neutrophils was also investigated. The inhibitory effect of the propolis samples varied significantly during the studied period for both assays (3.4 +/- 1.1 to 16.0 +/- 1.1 mu g/mL for CLlum and 6.2 +/- 2.0 to 30.0 +/- 5.0 mu g/mL for CLluc), which was also observed in the quantitative profile of the main analyzed compounds (aromadendrin-4`-methyl ether, artepillin C, and baccharin). This effect started to become more prominent during the fall and, among all the studied extracts, the one obtained in May displayed the highest inhibitory effect on CL production (3.4 +/- 1.1 mu g/mL for alum and 6.2 +/- 2.0 mu g/mL for CLluc). The HPLC qualitative profiles of the extracts of propolis samples were quite similar, but there was a huge variation in terms of quantitative profile. It seems that aromadendrin-4`-methyl ether and baccharin play an essential role in the antioxidant activity, while artepillin C is not very important for this effect. The extracts presenting the highest antioxidant activity were produced in May, June, and August, and they did not display cytotoxicity at 25 mu g/mL; quercetin, used as control, was not toxic to neutrophils at 8.5 mu g/mL (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aims of this study were to evaluate whether air pollution during pre-natal and post-natal phases change habituation and short-term discriminative memories and if oxidants are involved in this process. As secondary objectives, it was to evaluate if the change of filtered to nonfiltered environment could protect the cortex of rats against oxidative stress as well as to modify the behavior of these animals. Wistar, male rats were divided into four groups (n = 12/group): pre and post-natal exposure until adulthood to filtered air (FA); pre-natal period to nonfiltered air (NFA-FA); until (21st post-natal day) and post-natal to filtered air until adulthood (PND21); prenatal to filtered air until PND21 and post-natal to nonfiltered air until adulthood (FA-NFA); pre and post-natal to nonfiltered air (NFA). After 150 days of air pollution exposure, animals were tested in the spontaneous object recognition test to evaluate short-term discriminative and habituation memories. Rats were euthanized; blood was collected for metal determination; cortex dissected for oxidative stress evaluation. There was a significant increase in malondialdehyde (MDA) levels in the NFA group when compared to other groups (FA: 1.730 +/- 0.217; NFA-FA: 1.101 +/- 0.217; FA-NFA: 1.014 +/- 0.300; NFA: 5.978 +/- 1.920 nmol MDA/mg total proteins; p = 0.007). NFA group presented a significant decrease in short-term discriminative (FA: 0.603 +/- 0.106; NFA-FA: 0.669 +/- 0.0666; FA-NFA: 0.374 +/- 0.178; NFA: -0.00631 +/- 0.106 sec; p = 0.006) and an improvement in habituation memories when compared to other groups. Therefore, exposure to air pollution during both those periods impairs short-term discriminative memory and cortical oxidative stress may mediate this process.
Resumo:
This study was designed to assess possible associations between biomarkers of mercury (Hg) exposure and oxidative stress in fish-eating Amazonian communities. Clinical samples were obtained from riparians living in the Brazilian Amazon. Biomarkers of oxidative stress (glutathione - GSH, glutathione peroxidase - GSH-Px, catalase - CAT, activity and reactivation index of delta-aminolevulinate dehydratase - ALA-D (R%) were determined in blood. Total Hg was measured in whole blood (B-Hg), plasma (P-Hg) and hair (H-Hg). Association between biomarkers of Hg exposure and oxidative stress were examined using multiple regression models, including age, gender, alcohol consumption, smoking status, fish consumption and then stratified for gender. Significant inverse relations were observed between GSH-Px, GSH, CAT, ALA-D activity and B-Hg or H-Hg (p<0.05). ALA-D reactivation index was positively related to B-Hg (p<0.0001). P-Hg was directly related to ALA-D reactivation index and inversely associated with GSH-Px, GSH, and ALA-D activity (p<0.05). When stratified for gender, women showed significant inverse associations between all biomarkers of Hg exposure and CAT (p<0.05) or GSH (p<0.05), while for men only P-Hg showed a significant inverse relation with GSH (p<0.001). Our results clearly demonstrated an association between Hg exposure and oxidative stress. Moreover, for B-Hg, P-Hg and H-Hg gender differences were present. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Galectin-1 (Gal-1) regulates leukocyte turnover by inducing the cell surface exposure of phosphatidylserine (PS), a ligand that targets cells for phagocytic removal, in the absence of apoptosis. Gal-1 monomer- dimer equilibrium appears to modulate Gal-1-induced PS exposure, although the mechanism underlying this regulation remains unclear. Here we show that monomer- dimer equilibrium regulates Gal-1 sensitivity to oxidation. A mutant form of Gal-1, containing C2S and V5D mutations (mGal-1), exhibits impaired dimerization and fails to induce cell surface PS exposure while retaining the ability to recognize carbohydrates and signal Ca(2+) flux in leukocytes. mGal-1 also displayed enhanced sensitivity to oxidation, whereas ligand, which partially protected Gal-1 from oxidation, enhanced Gal-1 dimerization. Continual incubation of leukocytes with Gal-1 resulted in gradual oxidative inactivation with concomitant loss of cell surface PS, whereas rapid oxidation prevented mGal-1 from inducing PS exposure. Stabilization of Gal-1 or mGal-1 with iodoacetamide fully protected Gal-1 and mGal-1 from oxidation. Alkylation-induced stabilization allowed Gal-1 to signal sustained PS exposure in leukocytes and mGal-1 to signal both Ca(2+) flux and PS exposure. Taken together, these results demonstrate that monomer-dimer equilibrium regulates Gal-1 sensitivity to oxidative inactivation and provides a mechanism whereby ligand partially protects Gal-1 from oxidation.
Resumo:
Iron and oxidative stress have a regulatory interplay. During the oxidative burst, phagocytic cells produce free radicals such as hypochlorous acid (HOCl). Nevertheless, scarce studies evaluated the effect of either iron deficiency anemia (IDA) or anemia of chronic disease (ACD) on phagocyte function in the elderly. The aim of the present study was to determine the oxidative burst, phagocytosis, and nitric oxide ((aEuro cent)NO) and HOCl, reactive species produced by monocytes and neutrophils in elderly with ACD or IDA. Soluble transferrin receptor, serum ferritin, and soluble transferrin receptor/log ferritin (TfR-F) index determined the iron status. The study was constituted of 39 patients aged over 60 (28 women and 11 men) recruited from the Brazilian Public Health System. Oxidative burst fluorescence intensity per neutrophil in IDA group and HOCl generation in both ACD and IDA groups were found to be lower (p < 0.05). The percentages of neutrophils and monocytes expressing phagocytosis in ACD group were found to be higher (p < 0.05). There was an overproduction of (aEuro cent)NO from monocytes, whereas the fundamental generation of HOCl appeared to be lower. Phagocytosis, oxidative burst, and (aEuro cent)NO and HOCl production are involved in iron metabolism regulation in elderly patients with ACD and IDA.
Resumo:
Aim: Hyperglycemia in diabetes mellitus (DM) may be one of the most important factors responsible for the development of oxidative stress, which promotes the main complications in DM patients. Therefore, this study evaluated if the hyperglycemia could be related to oxidative stress biomarkers, lipid profile, and renal function in type 2 diabetes patients without clinic complications. Methods: Plasmatic malondialdehyde (MDA), serum protein carbonyl (PCO), serum creatinine levels, microalbuminuria, glycated hemoglobin, and lipid profile were analyzed in 37 type 2 diabetic patients and 25 subjects with no diabetes. Results: Serum creatinine levels were within the reference values, but microalbuminuria presented increased levels in all the patients compared with controls (P G 0.05) and above of the reference values. The MDA, PCO, low- density lipoprotein, and triglyceride levels showed positive correlation with microalbuminuria levels. Moreover, glycated hemoglobin presented positive correlation with MDA, PCO, and microalbuminuria levels. Conclusions: The hyperglycemia could be responsible for the increase of the microalbuminuria levels and for the oxidation process in lipids and proteins in DM patients. Therefore, we suggested that the microvascular lesion is a direct consequence from hyperglycemia and an indirect one from the increased oxidative stress. Malondialdehyde and protein carbonyl levels could be suggested as additional biochemical evaluation to verify tissue damage in type 2 DM patients.
Resumo:
Background: Obesity and obstructive sleep apnea (OSA) are both associated with the prevalence of major cardiovascular illnesses and certain common factors they are considered responsible for, such as stress oxidative increase, sympathetic tonus and resistance to insulin. Objective: The aim of the present study was to compare the effect of continuous positive airway pressure (CPAP) on oxidative stress and adiponectin levels in obese patients with and without OSA. Methods: Twenty-nine obese patients were categorized into 3 groups: group 1: 10 individuals without OSA (apnea-hypopnea index, AHI <= 5) who did not have OSA diagnosed at polysomnography; group 2: 10 patients with moderate to severe OSA (AHI >= 20) who did not use CPAP; group 3: 9 patients with moderate to severe OSA (AHI >= 20) who used CPAP. Results: Group 3 showed significant differences before and after the use of CPAP, in the variables of diminished production of superoxide, and increased nitrite and nitrate synthesis and adiponectin levels. Positive correlations were seen between the AHI and the superoxide production, between the nitrite and nitrate levels and the adiponectin levels, between superoxide production and the HOMA-IR, and between AHI and the HOMA-IR. Negative correlations were found between AHI and the nitrite and nitrate levels, between the superoxide production and that of nitric oxide, between the superoxide production and the adiponectin levels, between AHI and the adiponectin levels, and between the nitrite and nitrate levels and the HOMA-IR. Conclusions: This study demonstrates that the use of CPAP can reverse the increased superoxide production, the diminished serum nitrite, nitrate and plasma adiponectin levels, and the metabolic changes existing in obese patients with OSA. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.
Resumo:
It has been suggested that phosphate binders may reduce the inflammatory state of hemodialysis (HD) patients. However, it is not clear whether it has any effect on oxidative stress. The objective of this study was to evaluate the effect of sevelamer hydrochloride (SH) and calcium acetate (CA) on oxidative stress and inflammation markers in HD patients. Hemodialysis patients were randomly assigned to therapy with SH (n=17) or CA (n=14) for 1 year. Before the initiation of therapy (baseline) and at 12 months, we measured in vitro reactive oxygen species (ROS) production by stimulated and unstimulated polymorphonuclear neutrophils and serum levels of tumor necrosis factor alpha, interleukin-10, C-reactive protein, and albumin. There was a significant reduction of spontaneous ROS production in both groups after 12 months of therapy. There was a significant decrease of Staphylococcus aureus stimulated ROS production in the SH group. There was a significant increase in albumin serum levels only in the SH group. In the SH group, there was also a decrease in the serum levels of tumor necrosis factor alpha and C-reactive protein. Our results suggest that compared with CA treatment, SH may lead to a reduction in oxidative stress and inflammation. Therefore, it is possible that phosphate binders exert pleiotropic effects on oxidative stress and inflammation, which could contribute toward decreasing endothelial injury in patients in HD.
Resumo:
Background: Recent studies have assessed the direct effects of smoking on cardiac remodeling and function. However, the mechanisms of these alterations remain unknown. The aim of this study was to investigate de role of cardiac NADPH oxidase and antioxidant enzyme system on ventricular remodeling induced by tobacco smoke. Methods: Male Wistar rats that weighed 200-230 g were divided into a control group (C) and an experimental group that was exposed to tobacco smoke for a period of two months (ETS). After the two-month exposure period, morphological, biochemical and functional analyses were performed. Results: The myocyte cross-sectional area and left ventricle end-diastolic dimension was increased 16.2% and 33.7%, respectively, in the ETS group. The interstitial collagen volume fraction was also higher in ETS group compared to the controls. In addition to these morphological changes, the ejection fraction and fractional shortening were decreased in the ETS group. Importantly, these alterations were related to augmented heart oxidative stress, which was characterized by an increase in NADPH oxidase activity, increased levels of lipid hydroperoxide and depletion of antioxidant enzymes (e.g., catalase, superoxide dismutase and glutathione peroxidase). In addition, cardiac levels of IFN-gamma, TNF-alpha and IL-10 were not different between the groups. Conclusion: Cardiac alterations that are induced by smoking are associated with increased NADPH oxidase activity, suggesting that this pathway plays a role in the ventricular remodeling induced by exposure to tobacco smoke. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
PURPOSE To compare reading ability after cataract surgery and bilateral implantation of multifocal intraocular lenses (IOLs) with a +3 00 diopter (D) addition (add) or a +4 00 D add SETTING Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil DESIGN Prospective comparative study METHODS Patients scheduled for cataract surgery were randomly assigned to bilateral implantation of an aspheric AcrySof ReSTOR multifocal IOL with a +3 00 diopter (D) addition (add) or a +4 00 D add The reading speed, critical print size, and reading acuity were measured binocularly with best correction using MNREAD acuity charts 6 months after surgery Patients were tested with the chart at the best patient-preferred reading distance and at 40 cm Binocular uncorrected and best distance-corrected visual acuities at far and near were also measured RESULTS The study enrolled 32 patients At the best reading distance the results were similar between the 2 IOL groups in all reading parameters When tested at 40 cm, reading speed at all print sizes from 03 to 00 (all P< 001), critical print size (P< 001) and reading acuity (P = 014) were statistically significantly better in the +3 00 D IOL group than in the +4 00 DIOL group Uncorrected and corrected visual acuities at far and near were similar between the 2 groups CONCLUSION Although the 2 IOL groups had similar performance in reading parameters, patients had to adjust to their best reading distance The +3 00 D IOL performed better than the +4 00 D IOL at 40 cm
Resumo:
The aim of this study was to investigate the effect of supplementation of vitamin E, vitamin C, and zinc on the oxidative stress in burned children. In a prospective double-blind placebo-controlled pilot study, 32 patients were randomized as no supplementation (n = 15) or antioxidant supplementation (n = 17) groups. Supplementation consisted of the antioxidant mixture of vitamin C (1.5 times upper intake level), vitamin E (1.35 times upper intake level), and zinc (2.0 times recommended dietary allowance) administered during 7 days starting on the second day of admittance into the hospital. Energy requirement was calculated by the Curreri equation, and protein input was 3.0 g/kg of ideal body mass index (percentile 50 degrees). Total antioxidant capacity of plasma and malondialdehyde were used to monitor oxidative stress. The time of wound healing was evaluated as the main clinical feature. Patients (age 54.2 +/- 48.9 months, 65.6% males), who exhibited 15.5 +/- 6.7% of total burn area, showed no differences in age and sex, when compared with controls. Intake of the administered antioxidants was obviously higher in treated subjects (P = .005), and serum differences were confirmed for vitamin E and C, but not for zinc (P = .180). There was a decrease in lipid peroxidation (malondialdehyde level) (P = .006) and an increase in vitamin E concentrations in the antioxidant supplementation group (P = .016). The time of wound healing was lower in the supplemented group (P < .001). The antioxidant supplementation through vitamin E and C and the mineral zinc apparently enhanced antioxidant protection against oxidative stress and allowed less time for wound healing. (J Burn Care Res 2009;30:859-866)