938 resultados para Open Data, Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämä kandidaatintyö keskittyy avoimen datan käyttämiseen peleissä nyt ja tulevaisuudessa. Sen tavoitteena on tutkia avoimen datan hyötyjä, saatavuutta ja mahdollisuuksia. Tuloksena selvisi, että useimmissa tapauksissa datan avaamisesta hyötyvät kaikki osapuolet. Runsaasti erilaista avointa dataa on saatavilla monissa erilaissa tiedostomuodoissa, moniin eri tarkoituksiin. Avoin data on hyödyllistä peleissä, koska sen avulla voidaan luoda monenlaista sisältöä niihin. Joitakin onnistuneita kokeiluja on jo tehty peleillä ja avoimella datalla, joten se voi olla hyvin tärkeä osa pelialaa tulevaisuudessa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. WikiRate is a Collective Awareness Platform for Sustainability and Social Innovation (CAPS) project with the aim of \crowdsourcing better companies" through analysis of their Environmental Social and Governance (ESG) performance. Research to inform the design of the platform involved surveying the current corporate ESG information landscape, and identifying ways in which an open approach and peer production ethos could be e ffectively mobilised to improve this landscape's fertility. The key requirement identi ed is for an open public repository of data tracking companies' ESG performance. Corporate Social Responsibility reporting is conducted in public, but there are barriers to accessing the information in a standardised analysable format. Analyses of and ratings built upon this data can exert power over companies' behaviour in certain circumstances, but the public at large have no access to the data or the most infuential ratings that utilise it. WikiRate aims to build an open repository for this data along with tools for analysis, to increase public demand for the data, allow a broader range of stakeholders to participate in its interpretation, and in turn drive companies to behave in a more ethical manner. This paper describes the quantitative Metrics system that has been designed to meet those objectives and some early examples of its use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A collaboration between dot.rural at the University of Aberdeen and the iSchool at Northumbria University, POWkist is a pilot-study exploring potential usages of currently available linked datasets within the cultural heritage domain. Many privately-held family history collections (shoebox archives) remain vulnerable unless a sustainable, affordable and accessible model of citizen-archivist digital preservation can be offered. Citizen-historians have used the web as a platform to preserve cultural heritage, however with no accessible or sustainable model these digital footprints have been ad hoc and rarely connected to broader historical research. Similarly, current approaches to connecting material on the web by exploiting linked datasets do not take into account the data characteristics of the cultural heritage domain. Funded by Semantic Media, the POWKist project is investigating how best to capture, curate, connect and present the contents of citizen-historians’ shoebox archives in an accessible and sustainable online collection. Using the Curios platform - an open-source digital archive - we have digitised a collection relating to a prisoner of war during WWII (1939-1945). Following a series of user group workshops, POWkist is now connecting these ‘made digital’ items with the broader web using a semantic technology model and identifying appropriate linked datasets of relevant content such as DBPedia (an archived linked dataset of Wikipedia) and Ordnance Survey Open Data. We are analysing the characteristics of cultural heritage linked datasets, so that these materials are better visualised, contextualised and presented in an attractive and comprehensive user interface. Our paper will consider the issues we have identified, the solutions we are developing and include a demonstration of our work-in-progress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preserving the cultural heritage of the performing arts raises difficult and sensitive issues, as each performance is unique by nature and the juxtaposition between the performers and the audience cannot be easily recorded. In this paper, we report on an experimental research project to preserve another aspect of the performing arts—the history of their rehearsals. We have specifically designed non-intrusive video recording and on-site documentation techniques to make this process transparent to the creative crew, and have developed a complete workflow to publish the recorded video data and their corresponding meta-data online as Open Data using state-of-the-art audio and video processing to maximize non-linear navigation and hypervideo linking. The resulting open archive is made publicly available to researchers and amateurs alike and offers a unique account of the inner workings of the worlds of theater and opera.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente estudio de caso busca examinar la incidencia de las medidas migratorias de control fronterizo implementadas por el Frontex y el gobierno Italiano en las condiciones mínimas de supervivencia de los migrantes irregulares, económicos y solicitantes de asilo en la Isla de Lampedusa, en el periodo 2011-2015. De esta manera, se identifican las medidas migratorias de control fronterizo implementadas por Frontex y el gobierno Italiano. Se examina la situación de la seguridad humana en la crisis migratoria de la Isla, y se analiza la relación entre las medidas migratorias de control fronterizo y las condiciones mínimas de supervivencia de los migrantes. El resultado de la investigación permite plasmar, las consecuencias negativas que han tenido las medidas migratorias en cuanto a las condiciones mínimas de supervivencia, lo que ha desembocado en una crisis humanitaria.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To understand a city and its urban structure it is necessary to study its history. This is feasible through GIS (Geographical Information Systems) and its by-products on the web. Starting from a cartographic view they allow an initial understanding of, and a comparison between, present and past data together with an easy and intuitive access to database information. The research done led to the creation of a GIS for the city of Bologna. It is based on varied data such as historical map, vector and alphanumeric historical data, etc.. After providing information about GIS we thought of spreading and sharing the collected data on the Web after studying two solutions available on the market: Web Mapping and WebGIS. In this study we discuss the stages, beginning with the development of Historical GIS of Bologna, which led to the making of a WebGIS Open Source (MapServer and Chameleon) and the Web Mapping services (Google Earth, Google Maps and OpenLayers).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Open Educational Resources (OER) are teaching, learning and research materials that have been released under an open licence that permits online access and re-use by others. The 2012 Paris OER Declaration encourages the open licensing of educational materials produced with public funds. Digital data and data sets produced as a result of scientific and non-scientific research are an increasingly important category of educational materials. This paper discusses the legal challenges presented when publicly funded research data is made available as OER, arising from intellectual property rights, confidentiality and information privacy laws, and the lack of a legal duty to ensure data quality. If these legal challenges are not understood, addressed and effectively managed, they may impede and restrict access to and re-use of research data. This paper identifies some of the legal challenges that need to be addressed and describes 10 proposed best practices which are recommended for adoption to so that publicly funded research data can be made available for access and re-use as OER.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerous statements and declarations have been made over recent decades in support of open access to research data. The growing recognition of the importance of open access to research data has been accompanied by calls on public research funding agencies and universities to facilitate better access to publicly funded research data so that it can be re-used and redistributed as public goods. International and inter-governmental bodies such as the ICSU/CODATA, the OECD and the European Union are strong supporters of open access to and re-use of publicly funded research data. This thesis focuses on the research data created by university researchers in Malaysian public universities whose research activities are funded by the Federal Government of Malaysia. Malaysia, like many countries, has not yet formulated a policy on open access to and re-use of publicly funded research data. Therefore, the aim of this thesis is to develop a policy to support the objective of enabling open access to and re-use of publicly funded research data in Malaysian public universities. Policy development is very important if the objective of enabling open access to and re-use of publicly funded research data is to be successfully achieved. In developing the policy, this thesis identifies a myriad of legal impediments arising from intellectual property rights, confidentiality, privacy and national security laws, novelty requirements in patent law and lack of a legal duty to ensure data quality. Legal impediments such as these have the effect of restricting, obstructing, hindering or slowing down the objective of enabling open access to and re-use of publicly funded research data. A key focus in the formulation of the policy was the need to resolve the various legal impediments that have been identified. This thesis analyses the existing policies and guidelines of Malaysian public universities to ascertain to what extent the legal impediments have been resolved. An international perspective is adopted by making a comparative analysis of the policies of public research funding agencies and universities in the United Kingdom, the United States and Australia to understand how they have dealt with the identified legal impediments. These countries have led the way in introducing policies which support open access to and re-use of publicly funded research data. As well as proposing a policy supporting open access to and re-use of publicly funded research data in Malaysian public universities, this thesis provides procedures for the implementation of the policy and guidelines for addressing the legal impediments to open access and re-use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After nearly fifteen years of the open access (OA) movement and its hard-fought struggle for a more open scholarly communication system, publishers are realizing that business models can be both open and profitable. Making journal articles available on an OA license is becoming an accepted strategy for maximizing the value of content to both research communities and the businesses that serve them. The first blog in this two-part series celebrating Data Innovation Day looks at the role that data-innovation is playing in the shift to open access for journal articles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of online algorithms have been developed that have small additional loss (regret) compared to the best “shifting expert”. In this model, there is a set of experts and the comparator is the best partition of the trial sequence into a small number of segments, where the expert of smallest loss is chosen in each segment. The regret is typically defined for worst-case data / loss sequences. There has been a recent surge of interest in online algorithms that combine good worst-case guarantees with much improved performance on easy data. A practically relevant class of easy data is the case when the loss of each expert is iid and the best and second best experts have a gap between their mean loss. In the full information setting, the FlipFlop algorithm by De Rooij et al. (2014) combines the best of the iid optimal Follow-The-Leader (FL) and the worst-case-safe Hedge algorithms, whereas in the bandit information case SAO by Bubeck and Slivkins (2012) competes with the iid optimal UCB and the worst-case-safe EXP3. We ask the same question for the shifting expert problem. First, we ask what are the simple and efficient algorithms for the shifting experts problem when the loss sequence in each segment is iid with respect to a fixed but unknown distribution. Second, we ask how to efficiently unite the performance of such algorithms on easy data with worst-case robustness. A particular intriguing open problem is the case when the comparator shifts within a small subset of experts from a large set under the assumption that the losses in each segment are iid.