962 resultados para Nonlinear programming problem
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
Natural gas industry has been confronted with big challenges: great growth in demand, investments on new GSUs – gas supply units, and efficient technical system management. The right number of GSUs, their best location on networks and the optimal allocation to loads is a decision problem that can be formulated as a combinatorial programming problem, with the objective of minimizing system expenses. Our emphasis is on the formulation, interpretation and development of a solution algorithm that will analyze the trade-off between infrastructure investment expenditure and operating system costs. The location model was applied to a 12 node natural gas network, and its effectiveness was tested in five different operating scenarios.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
In Nonlinear Optimization Penalty and Barrier Methods are normally used to solve Constrained Problems. There are several Penalty/Barrier Methods and they are used in several areas from Engineering to Economy, through Biology, Chemistry, Physics among others. In these areas it often appears Optimization Problems in which the involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. In this work some Penalty/Barrier functions are tested and compared, using in the internal process, Derivative-free, namely Direct Search, methods. This work is a part of a bigger project involving the development of an Application Programming Interface, that implements several Optimization Methods, to be used in applications that need to solve constrained and/or unconstrained Nonlinear Optimization Problems. Besides the use of it in applied mathematics research it is also to be used in engineering software packages.
Resumo:
This paper is on the self-scheduling for a power producer taking part in day-ahead joint energy and spinning reserve markets and aiming at a short-term coordination of wind power plants with concentrated solar power plants having thermal energy storage. The short-term coordination is formulated as a mixed-integer linear programming problem given as the maximization of profit subjected to technical operation constraints, including the ones related to a transmission line. Probability density functions are used to model the variability of the hourly wind speed and the solar irradiation in regard to a negative correlation. Case studies based on an Iberian Peninsula wind and concentrated solar power plants are presented, providing the optimal energy and spinning reserve for the short-term self-scheduling in order to unveil the coordination benefits and synergies between wind and solar resources. Results and sensitivity analysis are in favour of the coordination, showing an increase on profit, allowing for spinning reserve, reducing the need for curtailment, increasing the transmission line capacity factor. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on the maximization of total profit in a day-ahead market for a price-taker producer needing a short-term scheduling for wind power plants coordination with concentrated solar power plants, having thermal energy storage systems. The optimization approach proposed for the maximization of profit is a mixed-integer linear programming problem. The approach considers not only transmission grid constraints, but also technical operating constraints on both wind and concentrated solar power plants. Then, an improved short-term scheduling coordination is provided due to the more accurate modelling presented in this paper. Computer simulation results based on data for the Iberian wind and concentrated solar power plants illustrate the coordination benefits and show the effectiveness of the approach.
Resumo:
This paper describes a communication model to integrate repositories of programming problems with other e-Learning software components. The motivation for this work comes from the EduJudge project that aims to connect an existing repository of programming problems to learning management systems. When trying to use the existing repositories of learning objects we realized that they are mainly specialized search engines and lack features for integration with other e-Learning systems. With this model we intend to clarify the main features of a programming problem repository, in order to enable the design and development of software components that use it. The two main points of this model are the definition of programming problems as learning objects and the definition of the core functions exposed by the repository. In both cases, this model follows the existing specifications of the IMS standard and proposes extensions to deal with the special requirements of automatic evaluation and grading of programming exercises. In the definition of programming problems as learning objects we introduced a new schema for meta-data. This schema is used to represent meta-data related to automatic evaluation that cannot be conveniently represented using the standard: the type of automatic evaluation; the requirements of the evaluation engine; or the roles of different assets - tests cases, program solutions, etc. In the definition of the core functions we used two different web services flavours - SOAP and REST - and described each function as an operation for each type of interface. We describe also the data types of the arguments of each operation. These data types consist mainly on learning objects and their identifications, but include also usage reports and queries using XQuery.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
A sustentabilidade do sistema energético é crucial para o desenvolvimento económico e social das sociedades presentes e futuras. Para garantir o bom funcionamento dos sistemas de energia actua-se, tipicamente, sobre a produção e sobre as redes de transporte e de distribuição. No entanto, a integração crescente de produção distribuída, principalmente nas redes de distribuição de média e de baixa tensão, a liberalização dos mercados energéticos, o desenvolvimento de mecanismos de armazenamento de energia, o desenvolvimento de sistemas automatizados de controlo de cargas e os avanços tecnológicos das infra-estruturas de comunicação impõem o desenvolvimento de novos métodos de gestão e controlo dos sistemas de energia. O contributo deste trabalho é o desenvolvimento de uma metodologia de gestão de recursos energéticos num contexto de SmartGrids, considerando uma entidade designada por VPP que gere um conjunto de instalações (unidades produtoras, consumidores e unidades de armazenamento) e, em alguns casos, tem ao seu cuidado a gestão de uma parte da rede eléctrica. Os métodos desenvolvidos contemplam a penetração intensiva de produção distribuída, o aparecimento de programas de Demand Response e o desenvolvimento de novos sistemas de armazenamento. São ainda propostos níveis de controlo e de tomada de decisão hierarquizados e geridos por entidades que actuem num ambiente de cooperação mas também de concorrência entre si. A metodologia proposta foi desenvolvida recorrendo a técnicas determinísticas, nomeadamente, à programação não linear inteira mista, tendo sido consideradas três funções objectivo distintas (custos mínimos, emissões mínimas e cortes de carga mínimos), originando, posteriormente, uma função objectivo global, o que permitiu determinar os óptimos de Pareto. São ainda determinados os valores dos custos marginais locais em cada barramento e consideradas as incertezas dos dados de entrada, nomeadamente, produção e consumo. Assim, o VPP tem ao seu dispor um conjunto de soluções que lhe permitirão tomar decisões mais fundamentadas e de acordo com o seu perfil de actuação. São apresentados dois casos de estudo. O primeiro utiliza uma rede de distribuição de 32 barramentos publicada por Baran & Wu. O segundo caso de estudo utiliza uma rede de distribuição de 114 barramentos adaptada da rede de 123 barramentos do IEEE.
Multi-criteria optimisation approach to increase the delivered power in radial distribution networks
Resumo:
This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.
Resumo:
We show that incentive efficient allocations in economies with adverse selection and moral hazard can be determined as optimal solutions to a linear programming problem and we use duality theory to obtain a complete characterization of the optima. Our dual analysis identifies welfare effects associated with the incentives of the agents to truthfully reveal their private information. Because these welfare effects may generate non-convexities, incentive efficient allocations may involve randomization. Other properties of incentive efficient allocations are also derived.