896 resultados para Nonlinear contact stiffness
Resumo:
We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.
Resumo:
A miniature pressure transducer was used to assess the interlabial contact pressures produced by a group of 19 adults (mean age 30.6 years) with dysarthria following severe traumatic brain injury (TBI) during a set of speech and nonspeech tasks. Ten parameters relating to lip strength, endurance, rate of movement and lip pressure accuracy and stability were measured from the nonspeech tasks. The results attained by the TBI group were compared against a group of 19 age- and sex-matched control subjects. Significant differences between the groups were found for maximum interlabial contact pressure, maximum rate of repetition of maximum pressure, and lip pressure accuracy at 50 and 10% levels of maximum pressure. In regards to speech, the interlabial contact pressures generated by the TBI group and control group did not differ significantly. When expressed as percentages of maximum pressure, however, the TBI group's interlabial pressures appeared to have been generated with greater physiological effort. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
A new algorithm has been developed for smoothing the surfaces in finite element formulations of contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing smooth signed distance functions for the bodies. These functions are then employed for the computation of the gap and other variables needed for implementation of contact-impact. The smoothed signed distance functions are constructed by a moving least-squares approximation with a polynomial basis. Results show that when nodes are placed on a surface, the surface can be reproduced with an error of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for contact problems involving the contact of circular bodies. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Animal-based theories of Pavlovian conditioning propose that patterning discriminations are solved using unique cues or immediate configuring. Recent studies with humans, however, provided evidence that in positive and negative patterning two different rules are utilized. The present experiment was designed to provide further support for this proposal by tracking the time course of the allocation of cognitive resources. One group was trained in a positive patterning; schedule (A-, B-, AB+) and a second in a negative patterning schedule (A+, B+, AB-). Electrodermal responses and secondary task probe reaction time were measured. In negative patterning, reaction times were slower during reinforced stimuli than during non-reinforced stimuli at both probe positions while there were no differences in positive patterning. These results support the assumption that negative patterning is solved using a rule that is more complex and requires more resources than does the rule employed to solve positive patterning. (C) 2001 Elsevier Science (USA).
Resumo:
Objective: To explore circadian variation in pain, stiffness, and manual dexterity inpatients with hand osteoarthritis (OA). Methods: Twenty one patients with hand OA, as defined by ACR criteria (17 women, four men, mean age 62.2 years, range 52-74 years) self rated pain and stiffness on separate 10 cm horizontal visual analogue scales and performed bead intubation coordinometry (BIC) six times each day (on waking up, at bedtime, and every four hours in between) for 10 consecutive days. Each series (using data with the trend removed if there was a significant trend) was analysed for circadian rhythmicity by a cosine. vector technique (single cosinor). With individual data expressed as the percentage of the mean, group rhythm characteristics at period 24 hours were summarised for each variable by population mean cosinor analysis. Results: Individual analyses identified significant circadian rhythms at pless than or equal to0.05 for pain (n=15/21), stiffness (n=16/20), and dexterity (n=18/21), and a significant circadian rhythm on a group basis was identified for pain (p=0.013), stiffness (p
Resumo:
Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L-2 and L-4. Recordings were made of IAP and electromyographic activity from L-4/L-2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L-4 and L-2 increased above base-level values at functional residual capacity (L-2 14.9 N/mm and L-4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L-2 24.9 N/mm and L-4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.
Resumo:
Based on the refined non-conforming element method for geometric nonlinear analysis, a refined nonlinear non-conforming triangular plate element is constructed using the Total Lagrangian (T.L.) and the Updated Lagrangian (U.L.) approach. The refined nonlinear non-conforming triangular plate element is based on the Allman's triangular plane element with drilling degrees of freedom [1] and the refined non-conforming triangular plate element RT9 [2]. The element is used to analyze the geometric nonlinear behavior of plates and the numerical examples show that the refined non-conforming triangular plate element by the T.L. and U.L. approach can give satisfactory results. The computed results obtained from the T.L. and U.L. approach for the same numerical examples are somewhat different and the reasons for the difference of the computed results are given in detail in this paper. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, a mixed-integer nonlinear approach is proposed to support decision-making for a hydro power producer, considering a head-dependent hydro chain. The aim is to maximize the profit of the hydro power producer from selling energy into the electric market. As a new contribution to earlier studies, a risk aversion criterion is taken into account, as well as head-dependency. The volatility of the expected profit is limited through the conditional value-at-risk (CVaR). The proposed approach has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent reservoirs under competitive environment. We propose a new nonlinear optimization method to consider hydroelectric power generation as a function of water discharge and also of the head. Head-dependency is considered on short-term hydro scheduling in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one of the main Portuguese cascaded hydro systems, providing a higher profit at a negligible additional computation time in comparison with a linear optimization method that ignores head-dependency.