922 resultados para Non-ideal power sources
Resumo:
Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.
Resumo:
El objetivo principal de esta tesis ha sido el diseño y la optimización de receptores implementados con fibra óptica, para ser usados en redes ópticas de alta velocidad que empleen formatos de modulación de fase. En los últimos años, los formatos de modulación de fase (Phase Shift keying, PSK) han captado gran atención debido a la mejora de sus prestaciones respecto a los formatos de modulación convencionales. Principalmente, presentan una mejora de la eficiencia espectral y una mayor tolerancia a la degradación de la señal causada por la dispersión cromática, la dispersión por modo de polarización y los efectos no-lineales en la fibra óptica. En este trabajo, se analizan en detalle los formatos PSK, incluyendo sus variantes de modulación de fase diferencial (Differential Phase Shift Keying, DPSK), en cuadratura (Differential Quadrature Phase Shift Keying, DQPSK) y multiplexación en polarización (Polarization Multiplexing Differential Quadrature Phase Shift Keying, PM-DQPSK), con la finalidad de diseñar y optimizar los receptores que permita su demodulación. Para ello, se han analizado y desarrollado nuevas estructuras que ofrecen una mejora en las prestaciones del receptor y una reducción de coste comparadas con las actualmente disponibles. Para la demodulación de señales DPSK, en esta tesis, se proponen dos nuevos receptores basados en un interferómetro en línea Mach-Zehnder (MZI) implementado con tecnología todo-fibra. El principio de funcionamiento de los MZI todo-fibra propuestos se asienta en la interferencia modal que se produce en una fibra multimodo (MMF) cuando se situada entre dos monomodo (SMF). Este tipo de configuración (monomodo-multimodo-monomodo, SMS) presenta un buen ratio de extinción interferente si la potencia acoplada en la fibra multimodo se reparte, principal y equitativamente, entre dos modos dominantes. Con este objetivo, se han estudiado y demostrado tanto teórica como experimentalmente dos nuevas estructuras SMS que mejoran el ratio de extinción. Una de las propuestas se basa en emplear una fibra multimodo de índice gradual cuyo perfil del índice de refracción presenta un hundimiento en su zona central. La otra consiste en una estructura SMS con las fibras desalineadas y donde la fibra multimodo es una fibra de índice gradual convencional. Para las dos estructuras, mediante el análisis teórico desarrollado, se ha demostrado que el 80 – 90% de la potencia de entrada se acopla a los dos modos dominantes de la fibra multimodo y se consigue una diferencia inferior al 10% entre ellos. También se ha demostrado experimentalmente que se puede obtener un ratio de extinción de al menos 12 dB. Con el objeto de demostrar la capacidad de estas estructuras para ser empleadas como demoduladores de señales DPSK, se han realizado numerosas simulaciones de un sistema de transmisión óptico completo y se ha analizado la calidad del receptor bajo diferentes perspectivas, tales como la sensibilidad, la tolerancia a un filtrado óptico severo o la tolerancia a las dispersiones cromática y por modo de polarización. En todos los casos se ha concluido que los receptores propuestos presentan rendimientos comparables a los obtenidos con receptores convencionales. En esta tesis, también se presenta un diseño alternativo para la implementación de un receptor DQPSK, basado en el uso de una fibra mantenedora de la polarización (PMF). A través del análisi teórico y del desarrollo de simulaciones numéricas, se ha demostrado que el receptor DQPSK propuesto presenta prestaciones similares a los convencionales. Para complementar el trabajo realizado sobre el receptor DQPSK basado en PMF, se ha extendido el estudio de su principio de demodulación con el objeto de demodular señales PM-DQPSK, obteniendo como resultado la propuesta de una nueva estructura de demodulación. El receptor PM-DQPSK propuesto se basa en la estructura conjunta de una única línea de retardo junto con un rotador de polarización. Se ha analizado la calidad de los receptores DQPSK y PM-DQPSK bajo diferentes perspectivas, tales como la sensibilidad, la tolerancia a un filtrado óptico severo, la tolerancia a las dispersiones cromática y por modo de polarización o su comportamiento bajo condiciones no-ideales. En comparación con los receptores convencionales, nuestra propuesta exhibe prestaciones similares y además permite un diseño más simple que redunda en un coste potencialmente menor. En las redes de comunicaciones ópticas actuales se utiliza la tecnología de multimplexación en longitud de onda (WDM) que obliga al uso de filtros ópticos con bandas de paso lo más estrechas posibles y a emplear una serie de dispositivos que incorporan filtros en su arquitectura, tales como los multiplexores, demultiplexores, ROADMs, conmutadores y OXCs. Todos estos dispositivos conectados entre sí son equivalentes a una cadena de filtros cuyo ancho de banda se va haciendo cada vez más estrecho, llegando a distorsionar la forma de onda de las señales. Por esto, además de analizar el impacto del filtrado óptico en las señales de 40 Gbps DQPSK y 100 Gbps PM-DQPSK, este trabajo de tesis se completa estudiando qué tipo de filtro óptico minimiza las degradaciones causadas en la señal y analizando el número máximo de filtros concatenados que permiten mantener la calidad requerida al sistema. Se han estudiado y simulado cuatro tipos de filtros ópticos;Butterworth, Bessel, FBG y F-P. ABSTRACT The objective of this thesis is the design and optimization of optical fiber-based phase shift keying (PSK) demodulators for high-bit-rate optical networks. PSK modulation formats have attracted significant attention in recent years, because of the better performance with respect to conventional modulation formats. Principally, PSK signals can improve spectrum efficiency and tolerate more signal degradation caused by chromatic dispersion, polarization mode dispersion and nonlinearities in the fiber. In this work, many PSK formats were analyzed in detail, including the variants of differential phase modulation (Differential Phase Shift Keying, DPSK), in quadrature (Differential Quadrature Phase Shift Keying, DQPSK) and polarization multiplexing (Polarization Multiplexing Differential Quadrature Phase Shift Keying, PM-DQPSK), in order to design and optimize receivers enabling demodulations. Therefore, novel structures, which offer good receiver performances and a reduction in cost compared to the current structures, have been analyzed and developed. Two novel receivers based on an all-fiber in-line Mach-Zehnder interferometer (MZI) were proposed for DPSK signal demodulation in this thesis. The operating principle of the all-fiber MZI is based on the modal interference that occurs in a multimode fiber (MMF) when it is located between two single-mode fibers (SMFs). This type of configuration (Single-mode-multimode-single-mode, SMS) can provide a good extinction ratio if the incoming power from the SMF could be coupled equally into two dominant modes excited in the MMF. In order to improve the interference extinction ratio, two novel SMS structures have been studied and demonstrated, theoretically and experimentally. One of the two proposed MZIs is based on a graded-index multimode fiber (MMF) with a central dip in the index profile, located between two single-mode fibers (SMFs). The other one is based on a conventional graded-index MMF mismatch spliced between two SMFs. Theoretical analysis has shown that, in these two schemes, 80 – 90% of the incoming power can be coupled into the two dominant modes exited in the MMF, and the power difference between them is only ~10%. Experimental results show that interference extinction ratio of 12 dB could be obtained. In order to demonstrate the capacity of these two structures for use as DPSK signal demodulators, numerical simulations in a completed optical transmission system have been carried out, and the receiver quality has been analyzed under different perspectives, such as sensitivity, tolerance to severe optical filtering or tolerance to chromatic and polarization mode dispersion. In all cases, from the simulation results we can conclude that the two proposed receivers can provide performances comparable to conventional ones. In this thesis, an alternative design for the implementation of a DQPSK receiver, which is based on a polarization maintaining fiber (PMF), was also presented. To complement the work made for the PMF-based DQPSK receiver, the study of the demodulation principle has been extended to demodulate PM-DQPSK signals, resulting in the proposal of a novel demodulation structure. The proposed PM-DQPSK receiver is based on only one delay line and a polarization rotator. The quality of the proposed DQPSK and PM-DQPSK receivers under different perspectives, such as sensitivity, tolerance to severe optical filtering, tolerance to chromatic dispersion and polarization mode dispersion, or behavior under non-ideal conditions. Compared with the conventional receivers, our proposals exhibit similar performances but allow a simpler design which can potentially reduce the cost. The wavelength division multiplexing (WDM) technology used in current optical communications networks requires the use of optical filters with a passband as narrow as possible, and the use of a series of devices that incorporate filters in their architecture, such as multiplexers, demultiplexers, switches, reconfigurable add-drop multiplexers (ROADMs) and optical cross-connects (OXCs). All these devices connected together are equivalent to a chain of filters whose bandwidth becomes increasingly narrow, resulting in distortion to the waveform of the signals. Therefore, in addition to analyzing the impact of optical filtering on signal of 40 Gbps DQPSK and 100 Gbps PM-DQPSK, we study which kind of optical filter minimizes the signal degradation and analyze the maximum number of concatenated filters for maintaining the required quality of the system. Four types of optical filters, including Butterworth, Bessel, FBG and FP, have studied and simulated.
Resumo:
Included are 88 references on thermionic conversion of heat energy and the use of radioisotopes as power sources. References on thermoelectric conversion are included if the primary energy source is a radioisotope.
Resumo:
In this paper we report on a qualitative study into the influence of personal and non-personal communication sources in creating, sustaining and/or mediating people's perceptions of risk about purchasing online. In terms of non-personal communication sources, our findings suggest that the popular media significantly influence both purchasers and nonpurchasers’ perceptions of risk about using the Web for purchasing. Despite these negative perceptions, those who have purchased online appear to pay little attention to change agent communications on websites, such as logos, icons and statements about secure payment systems, which are designed to alleviate these concerns. In terms of inter-personal communication sources, our findings suggest that while there is evidence that to some degree, friends or peers influenced the interviewees about purchasing online, the purchasers in our study indicated that they would not influence others to do the same. We conclude our paper with suggestions for future interpretive research into the influence of communication sources on acceptance of the Web for purchasing.
Resumo:
We present a model for detection of the states of a coupled quantum dots (qubit) by a quantum point contact. Most proposals for measurements of states of quantum systems are idealized. However in a real laboratory the measurements cannot be perfect due to practical devices and circuits. The models using ideal devices are not sufficient for describing the detection information of the states of the quantum systems. Our model therefore includes the extension to a non-ideal measurement device case using an equivalent circuit. We derive a quantum trajectory that describes the stochastic evolution of the state of the system of the qubit and the measuring device. We calculate the noise power spectrum of tunnelling events in an ideal and a non-ideal quantum point contact measurement respectively. We found that, for the strong coupling case it is difficult to obtain information of the quantum processes in the qubit by measurements using a non-ideal quantum point contact. The noise spectra can also be used to estimate the limits of applicability of the ideal model.
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
This paper focuses on the move from buyer dominance toward interdependence between buyers and suppliers in a distribution channel. The paper introduces a case study collected through in-depth interviews and participative observations. It examines the relationships between a timber supplier and its customers in the builders' merchants sector. We stress the relevance of considering actions intended to change the power balance, rather than focusing only on trust. The power balance in a dyadic relationship is dynamic, and power positions need to be constantly re-evaluated. An important power resource is information asymmetry, manifested in the supplier's information about: products, regional and local demand, and the usage of the products. For practitioners, we highlight the possibility of exerting a non-coercive power resource, such as information asymmetry, in order to increase the relative power. Furthermore, being open about the power position between a buyer and a seller can foster a more efficient collaboration.
Resumo:
The search-experience-credence framework from economics of information, the human-environment relations models from environmental psychology, and the consumer evaluation process from services marketing provide a conceptual basis for testing the model of "Pre-purchase Information Utilization in Service Physical Environments." The model addresses the effects of informational signs, as a dimension of the service physical environment, on consumers' perceptions (perceived veracity and perceived performance risk), emotions (pleasure) and behavior (willingness to buy). The informational signs provide attribute quality information (search and experience) through non-personal sources of information (simulated word-of-mouth and non-personal advocate sources).^ This dissertation examines: (1) the hypothesized relationships addressed in the model of "Pre-purchase Information Utilization in Service Physical Environments" among informational signs, perceived veracity, perceived performance risk, pleasure, and willingness to buy, and (2) the effects of attribute quality information and sources of information on consumers' perceived veracity and perceived performance risk.^ This research is the first in-depth study about the role and effects of information in service physical environments. Using a 2 x 2 between subjects experimental research procedure, undergraduate students were exposed to the informational signs in a simulated service physical environment. The service physical environments were simulated through color photographic slides.^ The results of the study suggest that: (1) the relationship between informational signs and willingness to buy is mediated by perceived veracity, perceived performance risk and pleasure, (2) experience attribute information shows higher perceived veracity and lower perceived performance risk when compared to search attribute information, and (3) information provided through simulated word-of-mouth shows higher perceived veracity and lower perceived performance risk when compared to information provided through non-personal advocate sources. ^
Resumo:
O contínuo crescimento da população mundial aumenta a demanda e a competição por energia, colocando grande esforço sobre as fontes de energia não renováveis existentes. Devido a isso, políticas globais para geração de energias renováveis e menos poluentes estão sendo fortalecidas, além de promoverem o desenvolvimento de novas tecnologias. Várias formas de conversão de energia foram desenvolvidas no decorrer dos anos, com destaque para os conversores de energia das correntes a base de turbinas, que demonstram alta capacidade de conversão energética e já se encontram em funcionamento. O modelo tridimensional TELEMAC3D foi utilizado para a investigação dos processos hidrodinâmicos. Este modelo foi acoplado ao módulo de conversão de energia para as análises nos locais de maior viabilidade e conversão energética na Plataforma Continental do Sul do Brasil. A região de estudo demonstrou possuir duas regiões com alto potencial para a exploração da energias das correntes marinhas, entretanto a região mais viável para a instalação de conversores de corrente é a região norte delimitada entre o Farol da Conceição e o Farol da Solidão, podendo atingir potência média de 10kW=Dia, e alcançando valores integrados de 3:5MW=Ano. Através de uma análise da sazonalidade foram observados, durante a primavera os períodos mais energéticos em ambas as regiões estudadas. As maiores intensidades de conversão de energia foram estimadas com variabilidade temporal de 16 dias, demonstrando alta correlação com eventos associados à passagem de frentes meteorológicas na região. O sítio da região norte, com a presença de barreiras que representam a forma dos conversores, se destaca mantendo boa conversão durante os eventos de ótimo potencial energético. Esta melhora se deve ao efeito de intensificação do campo de correntes associado à presença da estrutura física que otimiza a eficiência do sítio. Não foram observadas diferenças significativas no padrão de variabilidade temporal das simulações estudadas, indicando que a presença das barreiras não induz grandes alterações no padrão temporal da conversão de energia nas escalas temporais analisadas neste trabalho. Os eventos de alta geração de energia foram relacionados a incidência de fortes ventos de quadrante sul e norte, indicando que pelo formato e disposição dos conversores, ventos de sudoeste e norte podem favorecer ótimos eventos de conversão de energia. As simulações dos sítios de conversão demonstraram alta capacidade de geração energética, com quatro eventos de extrema geração de energia. Entretanto, o sítio da região norte demonstrou eficiência superior a 59,39 GWh ao ano, equivalendo a 0.22% do consumo energético do estado do Rio Grande do Sul no ano de 2010.
Resumo:
Conventional Si complementary-metal-oxide-semiconductor (CMOS) scaling is fast approaching its limits. The extension of the logic device roadmap for future enhancements in transistor performance requires non-Si materials and new device architectures. III-V materials, due to their superior electron transport properties, are well poised to replace Si as the channel material beyond the 10nm technology node to mitigate the performance loss of Si transistors from further reductions in supply voltage to minimise power dissipation in logic circuits. However several key challenges, including a high quality dielectric/III-V gate stack, a low-resistance source/drain (S/D) technology, heterointegration onto a Si platform and a viable III-V p-metal-oxide-semiconductor field-effect-transistor (MOSFET), need to be addressed before III-Vs can be employed in CMOS. This Thesis specifically addressed the development and demonstration of planar III-V p-MOSFETs, to complement the n-MOSFET, thereby enabling an all III-V CMOS technology to be realised. This work explored the application of InGaAs and InGaSb material systems as the channel, in conjunction with Al2O3/metal gate stacks, for p-MOSFET development based on the buried-channel flatband device architecture. The body of work undertaken comprised material development, process module development and integration into a robust fabrication flow for the demonstration of p-channel devices. The parameter space in the design of the device layer structure, based around the III-V channel/barrier material options of Inx≥0.53Ga1-xAs/In0.52Al0.48As and Inx≥0.1Ga1-xSb/AlSb, was systematically examined to improve hole channel transport. A mobility of 433 cm2/Vs, the highest room temperature hole mobility of any InGaAs quantum-well channel reported to date, was obtained for the In0.85Ga0.15As (2.1% strain) structure. S/D ohmic contacts were developed based on thermally annealed Au/Zn/Au metallisation and validated using transmission line model test structures. The effects of metallisation thickness, diffusion barriers and de-oxidation conditions were examined. Contacts to InGaSb-channel structures were found to be sensitive to de-oxidation conditions. A fabrication process, based on a lithographically-aligned double ohmic patterning approach, was realised for deep submicron gate-to-source/drain gap (Lside) scaling to minimise the access resistance, thereby mitigating the effects of parasitic S/D series resistance on transistor performance. The developed process yielded gaps as small as 20nm. For high-k integration on GaSb, ex-situ ammonium sulphide ((NH4)2S) treatments, in the range 1%-22%, for 10min at 295K were systematically explored for improving the electrical properties of the Al2O3/GaSb interface. Electrical and physical characterisation indicated the 1% treatment to be most effective with interface trap densities in the range of 4 - 10×1012cm-2eV-1 in the lower half of the bandgap. An extended study, comprising additional immersion times at each sulphide concentration, was further undertaken to determine the surface roughness and the etching nature of the treatments on GaSb. A number of p-MOSFETs based on III-V-channels with the most promising hole transport and integration of the developed process modules were successfully demonstrated in this work. Although the non-inverted InGaAs-channel devices showed good current modulation and switch-off characteristics, several aspects of performance were non-ideal; depletion-mode operation, modest drive current (Id,sat=1.14mA/mm), double peaked transconductance (gm=1.06mS/mm), high subthreshold swing (SS=301mV/dec) and high on-resistance (Ron=845kΩ.μm). Despite demonstrating substantial improvement in the on-state metrics of Id,sat (11×), gm (5.5×) and Ron (5.6×), inverted devices did not switch-off. Scaling gate-to-source/drain gap (Lside) from 1μm down to 70nm improved Id,sat (72.4mA/mm) by a factor of 3.6 and gm (25.8mS/mm) by a factor of 4.1 in inverted InGaAs-channel devices. Well-controlled current modulation and good saturation behaviour was observed for InGaSb-channel devices. In the on-state In0.3Ga0.7Sb-channel (Id,sat=49.4mA/mm, gm=12.3mS/mm, Ron=31.7kΩ.μm) and In0.4Ga0.6Sb-channel (Id,sat=38mA/mm, gm=11.9mS/mm, Ron=73.5kΩ.μm) devices outperformed the InGaAs-channel devices. However the devices could not be switched off. These findings indicate that III-V p-MOSFETs based on InGaSb as opposed to InGaAs channels are more suited as the p-channel option for post-Si CMOS.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Resumo:
Méthodologie: Théorisation ancrée, Interactionnisme symbolique
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
The performance of iris recognition systems is significantly affected by the segmentation accuracy, especially in non- ideal iris images. This paper proposes an improved method to localise non-circular iris images quickly and accurately. Shrinking and expanding active contour methods are consolidated when localising inner and outer iris boundaries. First, the pupil region is roughly estimated based on histogram thresholding and morphological operations. There- after, a shrinking active contour model is used to precisely locate the inner iris boundary. Finally, the estimated inner iris boundary is used as an initial contour for an expanding active contour scheme to find the outer iris boundary. The proposed scheme is robust in finding exact the iris boundaries of non-circular and off-angle irises. In addition, occlusions of the iris images from eyelids and eyelashes are automatically excluded from the detected iris region. Experimental results on CASIA v3.0 iris databases indicate the accuracy of proposed technique.