941 resultados para Non-autonomous dynamical systems
Resumo:
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.
Resumo:
Fixed-point roundoff noise in digital implementation of linear systems arises due to overflow, quantization of coefficients and input signals, and arithmetical errors. In uniform white-noise models, the last two types of roundoff errors are regarded as uniformly distributed independent random vectors on cubes of suitable size. For input signal quantization errors, the heuristic model is justified by a quantization theorem, which cannot be directly applied to arithmetical errors due to the complicated input-dependence of errors. The complete uniform white-noise model is shown to be valid in the sense of weak convergence of probabilistic measures as the lattice step tends to zero if the matrices of realization of the system in the state space satisfy certain nonresonance conditions and the finite-dimensional distributions of the input signal are absolutely continuous.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Current software development relies increasingly on non-trivial coordination logic for com- bining autonomous services often running on di erent platforms. As a rule, however, in typical non-trivial software systems, such a coordination layer is strongly weaved within the application at source code level. Therefore, its precise identi cation becomes a major methodological (and technical) problem which cannot be overestimated along any program understanding or refactoring process. Open access to source code, as granted in OSS certi cation, provides an opportunity for the devel- opment of methods and technologies to extract, from source code, the relevant coordination information. This paper is a step in this direction, combining a number of program analysis techniques to automatically recover coordination information from legacy code. Such information is then expressed as a model in Orc, a general purpose orchestration language
Resumo:
This paper presents an algorithm to efficiently generate the state-space of systems specified using the IOPT Petri-net modeling formalism. IOPT nets are a non-autonomous Petri-net class, based on Place-Transition nets with an extended set of features designed to allow the rapid prototyping and synthesis of system controllers through an existing hardware-software co-design framework. To obtain coherent and deterministic operation, IOPT nets use a maximal-step execution semantics where, in a single execution step, all enabled transitions will fire simultaneously. This fact increases the resulting state-space complexity and can cause an arc "explosion" effect. Real-world applications, with several million states, will reach a higher order of magnitude number of arcs, leading to the need for high performance state-space generator algorithms. The proposed algorithm applies a compilation approach to read a PNML file containing one IOPT model and automatically generate an optimized C program to calculate the corresponding state-space.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and fractional calculus (FC). This new standpoint uses Multidimensional Scaling (MDS) as a powerful clustering and visualization tool. FC extends the concepts of integrals and derivatives to non-integer and complex orders. MDS is a technique that produces spatial or geometric representations of complex objects, such that those objects that are perceived to be similar in some sense are placed on the MDS maps forming clusters. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analysed. The events are characterized by their magnitude and spatiotemporal distributions and are divided into fifty groups, according to the Flinn–Engdahl (F–E) seismic regions of Earth. Several correlation indices are proposed to quantify the similarities among regions. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools for understanding the global behaviour of earthquakes.
Resumo:
The theory and applications of fractional calculus (FC) had a considerable progress during the last years. Dynamical systems and control are one of the most active areas, and several authors focused on the stability of fractional order systems. Nevertheless, due to the multitude of efforts in a short period of time, contributions are scattered along the literature, and it becomes difficult for researchers to have a complete and systematic picture of the present day knowledge. This paper is an attempt to overcome this situation by reviewing the state of the art and putting this topic in a systematic form. While the problem is formulated with rigour, from the mathematical point of view, the exposition intends to be easy to read by the applied researchers. Different types of systems are considered, namely, linear/nonlinear, positive, with delay, distributed, and continuous/discrete. Several possible routes of future progress that emerge are also tackled.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
The concepts involved with fractional calculus (FC) theory are applied in almost all areas of science and engineering. Its ability to yield superior modeling and control in many dynamical systems is well recognized. In this article, we will introduce the fundamental aspects associated with the application of FC to the control of dynamic systems.
Resumo:
A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.
Resumo:
In this work, we associate a p-periodic nonautonomous graph to each p-periodic nonautonomous Lorenz system with finite critical orbits. We develop Perron-Frobenius theory for nonautonomous graphs and use it to calculate their entropy. Finally, we prove that the topological entropy of a p-periodic nonautonomous Lorenz system is equal to the entropy of its associated nonautonomous graph.
Resumo:
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.