961 resultados para Neutron Scattering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on a synthetic strategy, extended anionic, homo and bimetallic oxalato-bridged transition-metal compounds with two (2D) and three-dimensional (3D) connectivities can be synthesized and crystallized. Thereby, the choice of the templating counterions will determine the crystal chemistry. Since the oxalato bridge is a mediator for both antiferro and ferromagnetic interactions between similar and dissimilar metal ions, long-range magnetic ordering will occur. Examples of the determination of magnetic structures in 2D and 3D compounds by means of elastic neutron scattering methods will be discussed. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymeric two- and three-dimensional, homo- and heterometallic oxalatebridged coordination compounds offer exciting opportunities, mainly in the fields of molecular magnetism and photophysics. Given that a large variety of magnetic phenomena have been reported so far from these molecular magnets, very limited experience is gained from elastic neutron scattering experiments. Therefore, with two examples, we will address the topic of the elucidation of magnetic structures by means of the neutron scattering technique. In addition, due to the possibility of the variation of different metal ions in varying oxidation states, interesting photophysical processes can be observed within the extended three-dimensional host/guest systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

n-Octyl-beta-D-glueopyranoside (OG) is a non-ionic glycolipid, which is used widely in biotechnical and biochemical applications. All-atom molecular dynamics simulations from two different initial coordinates and velocities in explicit solvent have been performed to characterize the structural behaviour of an OG aggregate at equilibrium conditions. Geometric packing properties determined from the simulations and small angle neutron scattering experiment state that OG micelles are more likely to exist in a non-spherical shape, even at the concentration range near to the critical micelle concentration (0.025 M). Despite few large deviations in the principal moment of inertia ratios, the average micelle shape calculated from both simulations is a prolate ellipsoid. The deviations at these time scales are presumably the temporary shape change of a micelle. However, the size of the micelle and the accessible surface areas were constant during the simulations with the micelle surface being rough and partially elongated. Radial distribution functions computed for the hydroxyl oxygen atoms of an OG show sharper peaks at a minimum van der Waals contact distance than the acetal oxygen, ring oxygen, and anomeric carbon atoms. This result indicates that these atoms are pointed outwards at the hydrophilic/hydrophobic interface, form hydrogen bonds with the water molecules, and thus hydrate the micelle surface effectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monte Carlo and molecular dynamics simulations and neutron scattering experiments are used to study the adsorption and diffusion of hydrogen and deuterium in zeolite Rho in the temperature range of 30-150 K. In the molecular simulations, quantum effects are incorporated via the Feynman-Hibbs variational approach. We suggest a new set of potential parameters for hydrogen, which can be used when Feynman-Hibbs variational approach is used for quantum corrections. The dynamic properties obtained from molecular dynamics simulations are in excellent agreement with the experimental results and show significant quantum effects on the transport at very low temperature. The molecular dynamics simulation results show that the quantum effect is very sensitive to pore dimensions and under suitable conditions can lead to a reverse kinetic molecular sieving with deuterium diffusing faster than hydrogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exhange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about I bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the simple quasi-static technique, also called the adiabatic mapping technique, can be used to determine the energetics of rotation of methyl and methoxy groups in amorphous poly(vinyl methyl ether) even though the latter process is too slow to be amenable to direct molecular dynamics simulation. For the methyl group rotation, we find that the mean and standard deviation of the simulated rotational barrier heights agree well with experimental data from quasi-elastic neutron scattering. In the case of the methoxy groups we find that just 4% of the groups contribute more than 90% of the observed dielectric relaxation strength. The groups which make the most contribution are those which, by virtue of their particular conformation and local environment, have two alternative positions of similar energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NMR spectroscopy and relaxometry were used to investigate microemulsion formation in supercritical CO2. The droplets were stabilised by the salt of a perfluorinated polyether. Spontaneous microemulsion formation was observed over a period of 5 h in the absence of applied sheer. Time-resolved relaxation times of the surfactant tail showed a stepwise increase in mobility of the tail over this period. Conversely, the translational mobility of water confined within the droplet decreased over the same interval. This data is consistent with the gradual decrease in droplet size as time progressed. Indeed, NMR self-diffusion coefficients were used to show that droplets with a radius of approximately 5 nm were formed at equilibrium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interlayer pores of swelling 2:1 clays provide an ideal 2-dimensional environment in which to study confined fluids. In this paper we discuss our understanding of the structure and dynamics of interlayer fluid species in expanded clays, based primarily on the outcome of recent molecular modelling and neutron scattering studies. Counterion solvation is compared with that measured in bulk solutions, and at a local level the cation-oxygen coordination is found to be remarkably similar in these two environments. However, for the monovalent ions the contribution to the first coordination shell from the clay surfaces increases with counterion radius. This gives rise to inner-sphere (surface) complexes in the case of potassium and caesium. In this context, the location of the negative clay surface charge (i.e. arising from octahedral or tetrahedral substitution) is also found to be of major importance. Divalent cations, such as calcium, eagerly solvate to form outer-sphere complexes. These complexes are able to pin adjacent clay layers together, and thereby prevent colloidal swelling. Confined water molecules form hydrogen bonds to each other and to the clays' surfaces. In this way their local environment relaxes to close to the bulk water structure within two molecular layers of the clay surface. Finally, we discuss the way in which the simple organic molecules methane, methanol and ethylene glycol behave in the interlayer region of hydrated clays. Quasi-elastic neutron scattering of isotopically labelled interlayer CH 3OD and (CH2OD)2 in deuterated clay allows us to measure the diffusion of the CH3- and CH2-groups in both clay and liquid environments. We find that in both the one-layer methanol solvates and the two-layer glycol solvates the diffusion of the most mobile organic molecules is close to that in the bulk solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase diagram of the simplest approximation to double-exchange systems, the bosonic double-exchange model with antiferromagnetic (AFM) superexchange coupling, is fully worked out by means of Monte Carlo simulations, large-N expansions, and variational mean-field calculations. We find a rich phase diagram, with no first-order phase transitions. The most surprising finding is the existence of a segmentlike ordered phase at low temperature for intermediate AFM coupling which cannot be detected in neutron-scattering experiments. This is signaled by a maximum (a cusp) in the specific heat. Below the phase transition, only short-range ordering would be found in neutron scattering. Researchers looking for a quantum critical point in manganites should be wary of this possibility. Finite-size scaling estimates of critical exponents are presented, although large scaling corrections are present in the reachable lattice sizes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intriguing lattice dynamics has been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct acoustic phonon-like modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states, and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.