1000 resultados para NI
Resumo:
Ni-W alloy coatings are electrodeposited with direct and pulse current using gluconate bath at pH5. Effects of direct current (DC) and pulse current (PC) on structural characteristics of the coatings have been investigated by energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). EDXS shows that W contents are 13.3 and 12.6 at.% in DC and PC (10:40) Ni-W coatings, respectively. FESEM analysis exhibits the homogeneous coarse nodular morphology in DC plated deposits. DSC studies reveal that Ni-W coatings are thermally stable up to 400 degrees C. XPS studies demonstrate that DC plated coating has significant amount of Ni and W in elemental form along with their respective oxidized species. In contrast, mainly oxidized metals are present in the as-deposited coatings prepared with PC plating. The microhardness of pulse current (100:400) deposited Ni-W coating is about 750HK that is much higher than DC plated coating (635 HK). Heat treatment of the deposits carried out at different temperatures show a significant increase in microhardness which can be comparable with hard chromium coatings.
Resumo:
Nanocrystalline strontium hexaferrites SrFe12-2x (Ni2+-Zr4+)(x)O-19] nanoparticles were successfully synthesized by sal gel process. For densification the powders were sintered at 950 degrees C/4 h. The sintered samples were characterized by X-ray diffraction (XRD), surface area measurement, and field emission scanning electron microscope (FESEM). The lattice parameter a is almost constant but c increased with x upto 0.8 and then decreased. The frequency dependent complex permittivity (epsilon and epsilon `' and permeability (mu' and mu `') and magnetic properties such as saturation magnetization (M-s), coercive field (H-c) were studied. If is observed that saturation magnetization increased gradually from 57.82 emuig to 67.2 emufg as x increased from 0.2 to 0.4 and then decreased from 672 emufg to 31.63 ernufg for x=1.0. In present study, x=0.4 shows high value of M-s 67.2 emu/g. The real part of permittivity (epsilon') remains constant upto a frequency 1 GHz and increases further with an increase of frequency, a resonance and anti resonance peak was observed above 1 GHz for all the samples. In real part of permeability (mu') the relaxation frequency is observed above 1 GHz for all the samples and it is attributed to the domain wall motion. It is well known that the permeability for polycrystalline ferrites can be described as the superposition of two different magnetizing mechanisms: spin rotation and domain wall motion. These low coercive strontium hexaferrites are suitable for magnetic recording applications in hard disks, floppy disks, video tapes, etc. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 degrees C to 1030 degrees C) and strain rate range of 10(-3) to 10(-1) s(-1). The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 degrees C to 1030 degrees C) and (epsilon) over dot range of 10(-3) to 10(-1.2) s(-1), and the deformation is unstable at T = 1073 K to 1153 K (800 degrees C to 880 degrees C) and (epsilon) over dot = 10(-3) to 10(-1.4) s(-1) as well as T = 1223 K to 1293 K (950 degrees C to 1020 degrees C) and (epsilon) over dot = 10(-1.4) to 10(-1) s(-1), with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
The high temperature strength of alloys with (gamma +gamma') microstructure is primarily due to the resistance of the ordered precipitate to cutting by matrix dislocations. Such shearing requires higher stresses since it involves the creation of a planar fault. Planar fault energy is known to be dependent on composition. This implies that the composition on the fault may be different from that in the bulk for energetic reasons. Such segregation (or desegregation) of specific alloying elements to the fault may result in Suzuki strengthening which has not been explored extensively in these systems. In this work, segregation (or desegregation) of alloying elements to planar faults was studied computationally in Ni-3(Al, Ti) and Co-3(W, Al) type gamma' precipitates. The composition dependence of APB energy and heat of mixing were evaluated from first principle electronic structure calculations. A phase field model incorporating the first principles results, was used to simulate the motion of an extended superdislocation under stress concurrently with composition evolution. Results reveal that in both systems, significant (de) segregation occurs on equilibration. On application of stress, solutes were dragged along with the APB in some cases. Additionally, it was also noted the velocity of the superdislocation under an applied stress is strongly dependent on atomic mobility (i. e. diffusivity).
Resumo:
We describe a group of alloys with ultrahigh strength of about 2 GPa at 700 degrees C and exceptional oxidation resistance to 1100 degrees C. These alloys exploit intermetallic phases with stable oxide forming elements that combine to form fine nanometric scale structures through eutectic transformations in ternary systems. The alloys offer engineering tensile plasticity of about 4% at room temperature though both conventional dislocation mechanisms and twinning in the more complex intermetallic constituent, along with slip lengths that are restricted by the interphase boundaries in the eutectics.
Resumo:
It is well established that Re and Ru additions to Ni-base superalloys result in improved creep performance and phase stability. However, the role of Re and Ru and their synergetic effects are not well understood, and the first step in understanding these effects is to design alloys with controlled microstructural parameters. A computational approach was undertaken in the present work for designing model alloys with varying levels of Re and Ru. Thermodynamic and first principles calculations were employed complimentarily to design a set of alloys with varying Re and Ru levels, but which were constrained by constant microstructural parameters, i.e., phase fractions and lattice misfit across the alloys. Three ternary/quaternary alloys of type Ni-Al-xRe-yRu were thus designed. These compositions were subsequently cast, homogenized and aged. Experimental results suggest that while the measured volume fraction matches the predicted value in the Ru containing alloy, volume fraction is significantly higher than the designed value in the Re containing alloys. This is possibly due to errors in the thermodynamic database used to predict phase fraction and composition. These errors are also reflected in the mismatch between predicted and measured values of misfit.
Resumo:
This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.
Resumo:
Interdiffusion study is conducted in the Ni-rich part of the beta-Ni(Pt)Al phase following the pseudo-binary approach. Interdiffusion coefficients over the whole composition range considered in this study increases with increase in Pt content, which is in line with the theoretical study predicting the decrease in vacancy formation and migration energy because of Pt addition. The trend of change in diffusion coefficient with the increase in Ni and Pt contents indicates that Pt preferably replaces Ni antisites.
Resumo:
The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Interdiffusion study is conducted in the Ni-Zr system in the temperature range of 750-850 A degrees C. Five intermetallic compounds, Ni5Zr, Ni7Zr2, Ni10Zr7, NiZr and NiZr2 are found to grow in the interdiffusion zone. Integrated diffusion coefficients are estimated for different phases. Activation energy is found to be lowest for Ni10Zr7 (178 +/- A 8 kJ/mol) and highest for NiZr (323 +/- A 6 kJ/mol). Tracer diffusion coefficients are estimated at the location of the Kirkendall marker plane in the Ni7Zr2 phase. Ni is found to have 10 times higher diffusion rate compared to Zr in this phase. Higher diffusion rate of Ni compared to Zr is found, which is expected because of higher number of Ni-Ni bonds compared to Zr-Zr bonds in this phase.
Resumo:
Diffusion couple experiments are conducted in Co-Ni-Pt system at 1200 degrees C and in Co-Ni-Fe system at 1150 degrees C, by coupling binary alloys with the third element. Uphill diffusion is observed for both Co and Ni in Pt rich corner of the Co-Ni-Pt system, whereas in the Co-Ni-Fe system, it is observed for Co. Main and cross interdiffusion coefficients are calculated at the composition of intersection of two independent diffusion profiles. In both the systems, the main interdiffusion coefficients are positive over the whole composition range and the cross interdiffusion coefficients show both positive and negative values at different regions. Hardness measured by performing the nanoindentations on diffusion couples of both the systems shows the higher values at intermediate compositions.
Resumo:
In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.
Resumo:
We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of gamma-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.
Resumo:
A strong influence of Ni content on the diffusion-controlled growth of the (Cu,Ni)(3)Sn and (Cu,Ni)(6)Sn-5 phases by coupling different Cu(Ni) alloys with Sn in the solid state is reported. The continuous increase in the thickness ratio of (Cu,Ni)(6)Sn-5 to (Cu,Ni)(3)Sn with the Ni content is explained by combined kinetic and thermodynamic arguments as follows: (i) The integrated interdiffusion coefficient does not change for the (Cu,Ni)(3)Sn phase up to 2.5 at.% Ni and decreases drastically for 5 at.% Ni. On the other hand, there is a continuous increase in the integrated interdiffusion coefficient for (Cu,Ni)(6)Sn-5 as a function of increasing Ni content. (ii) With the increase in Ni content, driving forces for the diffusion of components increase for both components in both phases but at different rates. However, the magnitude of these changes alone is not large enough to explain the high difference in the observed growth rate of the product phases because of Ni addition. (iv) Kirkendall marker experiments indicate that the Cu6Sn5 phase grows by diffusion of both Cu and Sn in the binary case. However, when Ni is added, the growth is by diffusion of Sn only. (v) Also, the observed grain refinement in the Cu6Sn5 phase with the addition of Ni suggests that the grain boundary diffusion of Sn may have an important role in the observed changes in the growth rate.
Resumo:
Electrochemical exfoliation technique using the pyrophosphate anion derived from tetra sodium pyrophosphate was employed to produce graphene. As-synthesized graphene was then drop dried over a cold rolled Cu sheet. Ni coating was then electrodeposited over bare Cu and graphene-Cu substrates. Both substrates were then isothermally annealed at 800 degrees C for 3 h. WDS analysis showed substantial atomic diffusion in annealed Ni-Cu sample. Cu-graphene-Ni sample, on the other hand, showed negligible diffusion illustrating the diffusion barrier property of the graphene coating. (C) 2016 Elsevier B.V. All rights reserved.