932 resultados para NANOSCALE
Resumo:
The aim of this study is to investigate flow-induced dynamic surface tension effects, similar to the well-known Marangoni phenomena, but solely generated by the nanoscale topography of the substrates. The flow-induced surface tension effects are examined on the basis of a sharp interface theory. It is demonstrated how nanoscale objects placed at the boundary of the flow domain result in the generation of substantial surface forces acting on the bulk flow.
Resumo:
A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
The chemical specificity of terahertz spectroscopy, when combined with techniques for sub-wavelength sensing, is giving new understanding of processes occurring at the nanometre scale in biological systems and offers the potential for single molecule detection of chemical and biological agents and explosives. In addition, terahertz techniques are enabling the exploration of the fundamental behaviour of light when it interacts with nanoscale optical structures, and are being used to measure ultrafast carrier dynamics, transport and localisation in nanostructures. This chapter will explain how terahertz scale modelling can be used to explore the fundamental physics of nano-optics, it will discuss the terahertz spectroscopy of nanomaterials, terahertz near-field microscopy and other sub-wavelength techniques, and summarise recent developments in the terahertz spectroscopy and imaging of biological systems at the nanoscale. The potential of using these techniques for security applications will be considered.
Resumo:
Carra sawdust pretrated with formaldehyde was used to adsorb RR239 (reactive azo dye) at varying pH and zerovalent iron (ZVI) dosage. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model. Batch experiments suggest that the decolorization efficiency was strongly enhanced with the presence of ZVI and low solution pH. The kinetics of dye sorption by mixed sorbent (5 g of sawdust and 180 mg of ZVI) at pH 2.0 was rapid, reaching more than 90% of the total discoloration in three minutes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Piezoresponse Force Microscopy (PFM) is used to characterize the nanoscale electromechanical properties of centrosymmetric CaCu3Ti4O12 ceramics with giant dielectric constant. Clear PFM contrast both in vertical (out-of-plane) and lateral (in-plane) modes is observed on the ceramic surface with varying magnitude and polarization direction depending on the grain crystalline orientation. Lateral signal changes its sign upon 180 degrees rotation of the sample thus ruling out spurious electrostatic contribution and confirming piezoelectric nature of the effect. Piezoresponse could be locally reversed by suitable electrical bias (local poling) and induced polarization was quite stable showing long-time relaxation (similar to 3 hrs). The electromechanical contrast in unpoled ceramics is attributed to the surface flexoelectric effect (strain gradient induced polarization) while piezoresponse hysteresis and ferroelectric-like behavior are discussed in terms of structural instabilities due to Ti off-center displacements and structural defects in this material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623767]
Resumo:
Thioglycolic acid-capped Use quantum dots (QDs) were assembled on glass substrates with two distinct polyelectrolytes, viz poly(allylamine hydrochloride) (PAH) and poly(amidoamine) (PAMAM), generation 4 dendrimer, via the layer-by-layer (LbL) technique. Films containing up to 30 polyelectrolyte/QD bilayers were prepared. The growth of the multilayers was monitored with UV-vis spectroscopy, which showed an almost linear increase in the absorbance of the 2.8 nm QDs at 535 nm with the number of deposited bilayers. AFM measurements estimated a film thickness of 3 nm per bilayer for the PAH/Cdse films. The adsorption process and the optical properties of the PAMAM/CdSe LbL films were further analyzed layer-by-layer using surface plasmon resonance (SPR), from which a thickness of 3.2 nm was found for a PAMAM/CdSe bilayer. Photoluminescence measurements revealed higher photooxidation of the quantum dots in PAH/CdSe than in PAMAM/CdSe films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential v(i) can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction U-i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for a reexamination of model calculations assuming spatial homogeneity.
Resumo:
Nanostructured polyaniline-modified electrodes were fabricated via the electrostatic layer-by-layer (LbL) technique where polyaniline (PANI) was assembled with one of three tetrasulfonated metallic phthalocyanines, viz. iron (FeTsPc), nickel (NiTsPc) and copper (CuTsPc). The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the 800 run absorption band due to PANI. Infrared spectroscopy in the transmission mode suggested specific interactions between PANI and the phthalocyanines, such as those between SO3- groups from the phthalocyanines and the protonated NH group from PANI. The films were employed to detect dopamine (DA) using cyclic voltammetry. In the presence of dopamine the PANI-based LbL films showed additional redox peaks at ca. 230 and 190 mV the oxidation peak increased linearly with the concentration of DA in the electrolytic solution. Films comprising PANI/FeTsPc were able to distinguish between DA and ascorbic acid (AA), which acts as a natural interferent in biological fluids. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lead zirconate titanate Pb(Zr 0.50Ti 0.50)O 3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100) orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. Results suggest that Schottky barriers and/or mechanical coupling near the filmsubstrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2012 IEEE.
Resumo:
Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.