769 resultados para Muscle Spasticity
Resumo:
A 47-year-old man presented with complaints of progressive diplopia in downgaze and a painful firm mass on the left medial superior canthus. On examination, there was marked hyperemia of the superior bulbar conjunctiva of the left eye. Systemic examination revealed erythematous papules on his trunk and pulmonary infiltrates. CT of the orbits revealed a fusiform enlargement of the left superior oblique muscle and diffuse infiltration of the left temporal region. Biopsy of the left superior oblique muscle and temporal muscle disclosed Congo red deposits that show apple-green birefringence under polarized light. A comprehensive systemic investigation failed to show any disease that could explain the amyloid deposits. The patient was then diagnosed as having primary systemic amyloidosis. We think that this case highlights the necessity of a biopsy in any atypical extraocular muscle enlargement before a diagnosis of myositis.
Resumo:
The aim of this paper was to verify whether AC biosusceptometry (ACB) is suitable for monitoring gastrointestinal (GI) contraction directly from smooth muscle in dogs, comparing with electrical recordings simultaneously. All experiments were performed in dogs with magnetic markers implanted under the serosa of the right colon and distal stomach, and their movements were recorded by ACB. Monopolar electrodes were implanted close to the magnetic markers and their electric potentials were recorded by electromyography (EMG). The effects of neostigmine, hyoscine butylbromide and meal on gastric and colonic parameters were studied. The ACB signal from the distal stomach was very similar to EMG; in the colonic recordings, however, within the same low-frequency band, ACB and EMG signals were characterized by simultaneity or a widely changeable frequency profile with time. ACB recordings were capable of demonstrating the changes in gastric and colonic motility determined by pharmacological interventions as well as by feeding. Our results reinforce the importance of evaluating the mechanical and electrical components of motility and show a temporal association between them. ACB and EMG arecomplementary for studying motility, with special emphasis on the colon. ACB offers an accurate method for monitoring in vivo GI motility.
Resumo:
OBJECTIVES To investigate the effects of chronic ethanol consumption on nitric oxide (NO)-mediated relaxation in rat cavernosal smooth muscle (CSM). METHODS Male wistar rats were divided into 2 groups: control and ethanol. CSM obtained from both groups were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hertz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (0.01-1000 mu mol L(-1)), sodium nitroprusside (SNP, 0.01-1000 mu mol L(-1)), or EFS (1-32 Hz) in strips precontracted with phenylephrine (10 mu mol L(-1)). Blood ethanol, serum testosterone levels, and basal nitrate generation were determined. Immunoexpression of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was also accessed. RESULTS Ethanol intake for 4 weeks significantly increased noradrenergic nerve-mediated contractions of CSM in response to EFS. The endothelium-dependent relaxation induced by acetylcholine decreased after the ethanol treatment. Ethanol consumption decreased serum testosterone levels but did not affect the nitrate levels on rat CSM. The mRNA and protein levels for eNOS and iNOS receptors were increased in CSM from ethanol-treated rats. CONCLUSIONS Ethanol consumption reduces endothelium-dependent relaxation induced by acetylcholine, but does not affect SNP or EFS-induced relaxation, suggesting that ethanol disrupts the endothelial function. Despite the overexpression of eNOS and iNOS in ethanol-treated rats, the impaired relaxation induced by acetylcholine may suggest that chronic ethanol consumption induces endothelial dysfunction. UROLOGY 74: 1250-1256, 2009. (C) 2009 Published by Elsevier Inc.
Resumo:
The aim of the present study was to evaluate the genetic and environmental factors affecting records of longissimus muscle area (LMA) and back fat thickness (BF) obtained between the 12th and 13th ribs, and rump fat thickness (RF) between the hook and pin bones, measured by real-time ultrasound in Nelore cattle. Also, weight records of 22,778 animals born from 1998 to 2003, in ten farms across six Brazilian states were used. Carcass traits as measured by ultrasound of the live animal were recorded from 2002 to 2004 in 2590 males and females with ages varying from 450 to 599 days. Fixed models including farm, year and season of birth, sex and type of feed effects, and the covariates age of dam (AOD) and age of animal at measurement were used to study the effect of environmental factors on these traits. The genetic parameters for LMA, BF and RF were estimated with two and three-trait animal models with 120-day weights using a restricted maximum likelihood method. All environmental effects significantly affected carcass traits, with the exception of year of birth for BF and RF and AOD for LMA. The heritability estimates for LMA, BF and RF were 0.35, 0.51 and 0.39, respectively. Standard errors obtained in one-trait analyses were from 0.07 to 0.09. Genetic correlation estimates between LMA and the two traits of subcutaneous fat were low (close to zero) and 0.74 between BF and RF, indicating that the selection for LMA should not cause antagonism in the genetic improvement of subcutaneous fat measured by real-time ultrasound. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
PURPOSE. Surgical recession of an extraocular muscle (EOM) posterior to its original insertion is a common form of strabismus surgery, weakening the rotational force exerted by the muscle on the globe and improving eye alignment. The purpose of this study was to assess myosin heavy chain (MyHC) isoform expression and satellite cell activity as defined by Pax7 expression in recessed EOMs of adult rabbits compared with that in muscles tenotomized but not recessed and with that in normal control muscles. METHODS. The scleral insertion of the superior rectus muscle was detached and sutured either 7 mm posterior to its original insertion site (recession surgery) or at the same site (tenotomy). One day before euthanatization, the rabbits received bromodeoxyuridine (BrdU) injections. After 7 and 14 days, selected EOMs from both orbits were examined for changes in fast, slow, neonatal, and developmental MyHC isoform expression, Pax7 expression, and BrdU incorporation. RESULTS. Recession and tenotomy surgery resulted in similar changes in the surgical EOMs. These included a decreased proportion of fast MyHC myofibers, an increased proportion of slow MyHC myofibers, and increased BrdU-positive satellite cells. Similar changes were seen in the non-operated contralateral superior rectus muscles. The ipsilateral inferior rectus showed reciprocal changes to the surgical superior rectus muscles. CONCLUSIONS. The EOMs are extremely adaptive to changes induced by recession and tenotomy surgery, responding with modulations in fiber remodeling and myosin expression. These adaptive responses could be manipulated to improve surgical success rates. (Invest Ophthalmol Vis Sci. 2010;51:5646-5656) DOI:10.1167/iovs.10-5523
Resumo:
Objectives: The aims of this study were to evaluate the visibility of the lateral pterygoid muscle (LPM) in temporomandibular joint (TMJ) images obtained by MRI, using different projections and to compare image findings with clinical symptoms of patients with and without temporomandibular disorders (TMD). Methods: In this study, LPM images of 50 participants with and without TMDs were investigated by MRI. The images of the LPM in different projections of 100 TMJs from 35 participants (70 TMJs) with and 15 participants (30 TMJs) without clinical signs and symptoms of TMD were visible and analysed. Results: The oblique sagittal and axial images of the TMJ clearly showed the LPM. Hypertrophy (1.45%), atrophy (2.85%) and contracture (2.85%) were the abnormalities found in the LPM. TMD signs, such as hypermobility (11.4%), hypomobility (12.9%) and disc displacement (20.0%), could be seen in TMJ images. Related clinical symptoms, such as pain (71.4%), articular sounds (30.4%), bruxism (25.7%) and headache (22.9%), were observed. Conclusions: Patients with TMD can present with alterations in the LPM thickness. Patients without TMD also showed alterations, such as atrophy and contracture, in TMJ images. Recognition of alterations in the LPM will improve our understanding of clinical symptoms and pathophysiology of TMD, and may lead to a more specific diagnosis of these disorders. Dentomaxillofacial Radiology (2010) 39, 494-500. doi: 10.1259/dmfr/80928433
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The research diagnostic criteria for temporomandibular disorders (RDC/TMD) are used for the classification of patients with temporomandibular disorders (TMD). Surface electromyography of the right and left masseter and temporalis muscles was performed during Maximum teeth clenching in 103 TMD patients subdivided according to the RDC/TMD into 3 non-overlapping groups: (a) 25 myogenous; (b) 61 arthrogenous; and (c) 17 psycogenous patients. Thirty-two control subjects matched for sex and age were also measured. During clenching, standardized total muscle activities (electromyographic potentials over time) significantly differed: 131.7 mu V/mu V s % in the normal subjects, 117.6 mu V/mu V s % in the myogenous patients, 105.3 mu V/mu V s % in the arthrogenous patients, 88.7 mu V/mu V s % in the psycogenous patients (p < 0.001, analysis of covariance). Symmetry in the temporalis muscles was larger in normal subjects (86.3%) and in myogenous patients (84.9%) than in arthrogenous (82.7%), and psycogenous patients (80.5%) (p=0.041). No differences were found for masseter muscle symmetry and torque coefficient (p>0.05). Surface electromyography of the masticatory muscles allowed an objective discrimination among different RDC/TMD subgroups. This evaluation could assist conventional clinical assessments. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
I Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO; NO gas solution) and nitroxyl ion (NO-; from Angeli's salt). 2 The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 muM), concentration-dependently inhibited responses to all agents. 10 muM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. 3 The NO scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-indazoline-1-oxyl-3-oxide; 100 muM) and hydroxocobalamin (100 muM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. 4 The NO- inhibitor, L-cysteine (3 mm), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. 5 The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO and NO-. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.