852 resultados para Multi-scale hierarchical framework


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many species inhabit fragmented landscapes, resulting either from anthropogenic or from natural processes. The ecological and evolutionary dynamics of spatially structured populations are affected by a complex interplay between endogenous and exogenous factors. The metapopulation approach, simplifying the landscape to a discrete set of patches of breeding habitat surrounded by unsuitable matrix, has become a widely applied paradigm for the study of species inhabiting highly fragmented landscapes. In this thesis, I focus on the construction of biologically realistic models and their parameterization with empirical data, with the general objective of understanding how the interactions between individuals and their spatially structured environment affect ecological and evolutionary processes in fragmented landscapes. I study two hierarchically structured model systems, which are the Glanville fritillary butterfly in the Åland Islands, and a system of two interacting aphid species in the Tvärminne archipelago, both being located in South-Western Finland. The interesting and challenging feature of both study systems is that the population dynamics occur over multiple spatial scales that are linked by various processes. My main emphasis is in the development of mathematical and statistical methodologies. For the Glanville fritillary case study, I first build a Bayesian framework for the estimation of death rates and capture probabilities from mark-recapture data, with the novelty of accounting for variation among individuals in capture probabilities and survival. I then characterize the dispersal phase of the butterflies by deriving a mathematical approximation of a diffusion-based movement model applied to a network of patches. I use the movement model as a building block to construct an individual-based evolutionary model for the Glanville fritillary butterfly metapopulation. I parameterize the evolutionary model using a pattern-oriented approach, and use it to study how the landscape structure affects the evolution of dispersal. For the aphid case study, I develop a Bayesian model of hierarchical multi-scale metapopulation dynamics, where the observed extinction and colonization rates are decomposed into intrinsic rates operating specifically at each spatial scale. In summary, I show how analytical approaches, hierarchical Bayesian methods and individual-based simulations can be used individually or in combination to tackle complex problems from many different viewpoints. In particular, hierarchical Bayesian methods provide a useful tool for decomposing ecological complexity into more tractable components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines managers‟ perceptions of Knowledge Management (KM) prior to implementation of KM-systems in a global insurance company and investigates whether Hierarchical structures are conducive to KM. Mixed methods are used, combining large scale surveying and case study using content analysis to organize the data into themes that provide the basis for arguments. Evidence suggests that managers strongly align their perception of KM with communication. Despite a multi-layered, hierarchical structure and strong middle management presence, organizational structure was not viewed as an issue. These factors are usually barriers to communication and organizational flexibility, yet managers believe that they may not inhibit KM becoming fully embedded. This evidence is contradicted by the results of a global KM study where silos, stovepipe and hierarchical structures were commonly cited as barriers. This contributes to the understanding of managerial mis-conceptions of knowledge as opposed to communication, and how organizations effectively share knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation bands are structures, developed in porous sandstones, that has small offsets and they are not shown on seismic section. The deformation bands of the pre and synrift sandstones of Araripe Basin were studied in outcrop, macroscopic and microscopic scales. The hierarchical, cinematic and spatial-geometric characteristics, and also the deformational mechanisms acting during its structural evolution were established too. In general, the mesoscopic scale observation allowed to discriminate deformation bands as singles or clusters in three main sets: NNE-SSW dextral; NE-SW normal (sometimes with strike-slip offset); and E-W sinistral; further a bed-parallel deformation bands as a local set. The microscopic characterization allowed to recognize the shearing and cataclastic character of such structures. Through the multi-scale study done in this work we verified that deformation bands analyzed were preferentially developed when sandstones under advanced stage of lithification. We also infer that the geometrical-spatial complexity of these bands, together with the presence of cataclastic matrix, can difficult the migration of fluids in reservoir rocks, resulting on their compartmentalization. Therefore, the study of deformation bands can aid researches about the structural evolution of sedimentary basin, as well as collaborate to understand the hydrodynamic behavior of reservoirs compartmented by these deformational structures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials are inherently multi-scale in nature consisting of distinct characteristics at various length scales from atoms to bulk material. There are no widely accepted predictive multi-scale modeling techniques that span from atomic level to bulk relating the effects of the structure at the nanometer (10-9 meter) on macro-scale properties. Traditional engineering deals with treating matter as continuous with no internal structure. In contrast to engineers, physicists have dealt with matter in its discrete structure at small length scales to understand fundamental behavior of materials. Multiscale modeling is of great scientific and technical importance as it can aid in designing novel materials that will enable us to tailor properties specific to an application like multi-functional materials. Polymer nanocomposite materials have the potential to provide significant increases in mechanical properties relative to current polymers used for structural applications. The nanoscale reinforcements have the potential to increase the effective interface between the reinforcement and the matrix by orders of magnitude for a given reinforcement volume fraction as relative to traditional micro- or macro-scale reinforcements. To facilitate the development of polymer nanocomposite materials, constitutive relationships must be established that predict the bulk mechanical properties of the materials as a function of the molecular structure. A computational hierarchical multiscale modeling technique is developed to study the bulk-level constitutive behavior of polymeric materials as a function of its molecular chemistry. Various parameters and modeling techniques from computational chemistry to continuum mechanics are utilized for the current modeling method. The cause and effect relationship of the parameters are studied to establish an efficient modeling framework. The proposed methodology is applied to three different polymers and validated using experimental data available in literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode switches are used to partition the system’s behavior into different modes to reduce the complexity of large embedded systems. Such systems operate in multiple modes in which each one corresponds to a specific application scenario; these are called Multi-Mode Systems (MMS). A different piece of software is normally executed for each mode. At any given time, the system can be in one of the predefined modes and then be switched to another as a result of a certain condition. A mode switch mechanism (or mode change protocol) is used to shift the system from one mode to another at run-time. In this thesis we have used a hierarchical scheduling framework to implement a multi-mode system called Multi-Mode Hierarchical Scheduling Framework (MMHSF). A two-level Hierarchical Scheduling Framework (HSF) has already been implemented in an open source real-time operating system, FreeRTOS, to support temporal isolation among real-time components. The main contribution of this thesis is the extension of the HSF featuring a multimode feature with an emphasis on making minimal changes in the underlying operating system (FreeRTOS) and its HSF implementation. Our implementation uses fixed-priority preemptive scheduling at both local and global scheduling levels and idling periodic servers. It also now supports different modes of the system which can be switched at run-time. Each subsystem and task exhibit different timing attributes according to mode, and upon a Mode Change Request (MCR) the task-set and timing interfaces of the entire system (including subsystems and tasks) undergo a change. A Mode Change Protocol specifies precisely how the system-mode will be changed. However, an application may not only need to change a mode but also a different mode change protocol semantic. For example, the mode change from normal to shutdown can allow all the tasks to be completed before the mode itself is changed, while changing a mode from normal to emergency may require aborting all tasks instantly. In our work, both the system mode and the mode change protocol can be changed at run-time. We have implemented three different mode change protocols to switch from one mode to another: the Suspend/resume protocol, the Abort protocol, and the Complete protocol. These protocols increase the flexibility of the system, allowing users to select the way they want to switch to a new mode. The implementation of MMHSF is tested and evaluated on an AVR-based 32 bit board EVK1100 with an AVR32UC3A0512 micro-controller. We have tested the behavior of each system mode and for each mode change protocol. We also provide the results for the performance measures of all mode change protocols in the thesis. RESUMEN Los conmutadores de modo son usados para particionar el comportamiento del sistema en diferentes modos, reduciendo así la complejidad de grandes sistemas empotrados. Estos sistemas tienen multiples modos de operación, cada uno de ellos correspondiente a distintos escenarios y para distintas aplicaciones; son llamados Sistemas Multimodales (o en inglés “Multi-Mode Systems” o MMS). Normalmente cada modo ejecuta una parte de código distinto. En un momento dado el sistema, que está en un modo concreto, puede ser cambiado a otro modo distinto como resultado de alguna condicion impuesta previamente. Los mecanismos de cambio de modo (o protocolos de cambio de modo) son usados para mover el sistema de un modo a otro durante el tiempo de ejecución. En este trabajo se ha usado un modelo de sistema operativo para implementar un sistema multimodo llamado MMHSF, siglas en inglés correspondientes a (Multi-Mode Hierarchical Scheduling Framework). Este sistema está basado en el HSF (Hierarchical Scheduling Framework), un modelo de sistema operativo con jerarquía de dos niveles, implementado en un sistema operativo en tiempo real de libre distribución llamado FreeRTOS, capaz de permitir el aislamiento temporal entre componentes. La principal contribución de este trabajo es la ampliación del HSF convirtiendolo en un sistema multimodo realizando los cambios mínimos necesarios sobre el sistema operativo FreeRTOS y la implementación ya existente del HSF. Esta implementación usa un sistema de planificación de prioridad fija para ambos niveles de jerarquía, ocupando el tiempo entre tareas con un “modo reposo”. Además el sistema es capaz de cambiar de un modo a otro en tiempo de ejecución. Cada subsistema y tarea son capaces de tener distintos atributos de tiempo (prioridad, periodo y tiempo de ejecución) en función del modo. Bajo una demanda de cambio de modo (Mode Change Request MCR) se puede variar el set de tareas en ejecución, así como los atributos de los servidores y las tareas. Un protocolo de cambio de modo espeficica precisamente cómo será cambiado el sistema de un modo a otro. Sin embargo una aplicación puede requerir no solo un cambio de modo, sino que lo haga de una forma especifica. Por ejemplo, el cambio de modo de “normal” a “apagado” puede permitir a las tareas en ejecución ser finalizadas antes de que se complete la transición, pero sin embargo el cambio de “normal” a “emergencia” puede requerir abortar todas las tareas instantaneamente. En este trabajo ambas características, tanto el modo como el protocolo de cambio, pueden ser cambiadas en tiempo de ejecución, pero deben ser previamente definidas por el desarrollador. Han sido definidos tres protocolos de cambios: el protocolo “suspender/continuar”, protocolo “abortar” y el protocolo “completar”. Estos protocolos incrementan la flexibilidad del sistema, permitiendo al usuario seleccionar de que forma quieren cambiar hacia el nuevo modo. La implementación del MMHSF ha sido testada y evaluada en una placa AVR EVK1100, con un micro-controlador AVR32UC3A0. Se ha comprobado el comportamiento de los distintos modos para los distintos protocolos, definidos previamente. Como resultado se proporcionan las medidades de rendimiento de los distintos protocolos de cambio de modo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel robust visual tracking framework, based on discriminative method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k-1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight-based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.