940 resultados para Monographic principle
Resumo:
This paper examines the determinacy implications of forecast-based monetary policy rules that set the interest rate in response to expected future inflation in a Neo-Wicksellian model that incorporates real balance effects. We show that the presence of such effects in closed economies restricts the ability of the Taylor principle to prevent indeterminacy of the rational expectations equilibrium. The problem is exacerbated in open economies, particularly if the policy rule reacts to consumer-price, rather than domestic-price, inflation. However, determinacy can be restored in both closed and open economies with the addition of monetary policy inertia.
Resumo:
Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are considered to activate the transcription factor NF-kappaB in various cell types. Strong inductive effects of NF-kappaB on proliferation and migration of NSCs have been described. Moreover, NF-kappaB is constitutively active in most tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-kappaB might provide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the apparently ambivalent role of NF-kappaB: physiological maintenance and repair of the brain via NSCs, and a potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation based on inflammation and NF-kappaB activity in NSCs.
Resumo:
John Broome has argued that value incommensurability is vagueness, by appeal to a controversial ‘collapsing principle’ about comparative indeterminacy. I offer a new counterexample to the collapsing principle. That principle allows us to derive an outright contradiction from the claim that some object is a borderline case of some predicate. But if there are no borderline cases, then the principle is empty. The collapsing principle is either false or empty.
Resumo:
A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.
Resumo:
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.
Resumo:
In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
The goal of this paper is to evaluate the validity of the Taylor principle for inflation control in 12 developing countries that use inflation targeting regimes: Brazil, Chile, Colombia, Hungary, Israel, Mexico, Peru, Philippines, Poland, South Africa, Thailand and Turkey. The test is based on a state-space model to determine when each country has followed the principle; then a threshold unit root test is used to verify if the stationarity of the deviation of the expected inflation from its target depends on compliance with the Taylor principle. The results show that such compliance leads to the stationarity of the deviation of the expected inflation from its target in all cases. Furthermore, in most cases, non-compliance with the Taylor principle leads to nonstationary deviation of the expected inflation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A precise fomulation of the strong Equivalence Principle is essential to the understanding of the relationship between gravitation and quantum mechanics. The relevant aspects are reviewed in a context including General Relativity but allowing for the presence of torsion. For the sake of brevity, a concise statement is proposed for the Principle: An ideal observer immersed in a gravitational field can choose a reference frame in which gravitation goes unnoticed. This statement is given a clear mathematical meaning through an accurate discussion of its terms. It holds for ideal observers (time-like smooth non-intersecting curves), but not for real, spatially extended observers. Analogous results hold for gauge fields. The difference between gravitation and the other fundamental interactions comes from their distinct roles in the equation of force.
Resumo:
Massive particles of spin 0 and 1 violate the equivalence principle (EP) at the tree level. on the other hand, if these particles are massless, they agree with the EP, which leads us to conjecture that from a semiclassical viewpoint massless particles, no matter what their spin, obey the EP. General relativity predicts a deflection angle of 2.63' for a nonrelativistic spinless massive boson passing close to the Sun, while for a massive vectorial boson of spin 1 the corresponding deflection is 2.62'.
Resumo:
In a recent paper, we raised a question on the validity of Feynman's prescription of disregarding the Pauli principle in intermediate states of perturbation theory. In the preceding Comment, Cavalcanti correctly pointed out that Feynman's prescription is consistent with the exact solution of the model that we used. This means that the Pauli principle does not necessarily apply to intermediate states. We discuss implications of this puzzling aspect.
Resumo:
In the general relativistic description of gravitation, geometry replaces the concept of force. This is possible because of the universal character of free fall, and would break down in its absence. on the other hand, the teleparallel version of general relativity is a gauge theory for the translation group and, as such, describes the gravitational interaction by a force similar to the Lorentz force of electromagnetism, a non-universal interaction. Relying on this analogy it is shown that, although the geometric description of general relativity necessarily requires the existence of the equivalence principle, the teleparallel gauge approach remains a consistent theory for gravitation in its absence.