331 resultados para Micrornas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. METHODS AND RESULTS: CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. -21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. CONCLUSION: EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In recent years, microRNA (miRNA) pathways have emerged as a crucial system for the regulation of tumorogenesis. miR-SNPs are a novel class of single nucleotide polymorphisms that can affect miRNA pathways. Design and Methods: We analyzed eight miR-SNPs by allelic discrimination in 141 patients with Hodgkin lymphoma and correlated the results with treatment-related toxicity, response, disease-free survival (DFS) and overall survival (OS). Results: The KRT81 (rs3660) GG genotype was associated with an increased risk of neurological toxicity (P=0.016), while patients with XPO5 (rs11077) AA or CC genotypes had a higher rate of bleomycin-associated pulmonary toxicity (P=0.048). Both miR-SNPs emerged as independent factors in the multivariate analysis. The XPO5 AA and CC genotypes were also associated with a lower response rate (P=0.036). XPO5 (P=0.039) and TRBP (rs784567) (P=0.022) genotypes emerged as prognostic markers for DFS, and XPO5 was also associated with OS (P=0.033). In the multivariate analysis, only XPO5 emerged as an independent prognostic factor for DFS (HR: 2.622; 95%CI 1.039-6.620; P=0.041). Given the influence of XPO5 and TRBP as individual markers, we then investigated the combined effect of these miR-SNPs. Patients with both the XPO5 AA/CC and TRBP TT/TC genotypes had the shortest DFS (P=0.008) and OS (P=0.008). Conclusion: miR-SNPs can add useful prognostic information on treatment-related toxicity and clinical outcome in Hodgkin lymphoma and can be used to identify patients likely to be chemoresistant or to relapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: The comparative analysis of gene gain and loss rates is critical for understanding the role of natural selection and adaptation in shaping gene family sizes. Studying complete genome data from closely related species allows accurate estimation of gene family turnover rates. Current methods and software tools, however, are not well designed for dealing with certain kinds of functional elements, such as microRNAs or transcription factor binding sites. Results: Here, we describe BadiRate, a new software tool to estimate family turnover rates, as well as the number of elements in internal phylogenetic nodes, by likelihood-based methods and parsimony. It implements two stochastic population models, which provide the appropriate statistical framework for testing hypothesis, such as lineage-specific gene family expansions or contractions. We have assessed the accuracy of BadiRate by computer simulations, and have also illustrated its functionality by analyzing a representative empirical dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: The comparative analysis of gene gain and loss rates is critical for understanding the role of natural selection and adaptation in shaping gene family sizes. Studying complete genome data from closely related species allows accurate estimation of gene family turnover rates. Current methods and software tools, however, are not well designed for dealing with certain kinds of functional elements, such as microRNAs or transcription factor binding sites. Results: Here, we describe BadiRate, a new software tool to estimate family turnover rates, as well as the number of elements in internal phylogenetic nodes, by likelihood-based methods and parsimony. It implements two stochastic population models, which provide the appropriate statistical framework for testing hypothesis, such as lineage-specific gene family expansions or contractions. We have assessed the accuracy of BadiRate by computer simulations, and have also illustrated its functionality by analyzing a representative empirical dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryonic stem (ES) cells-derived cardiomyocytes represent an attractive source of cells in cell replacement therapies for heart disease. However, controlled cardiogenic differentiation of ES cells requires a complete understanding of the complex molecular mechanisms regulating the differentiation process. We have previously shown that differentiation of ES cells into cardiomyocytes is favored by inactivation of the Notch 1 receptor pathway. In the present study, we therefore compared two ES cell lines, one with normal Notchl expression and one carrying deleted Notchl receptor alleles (Notchl-deleted ES cells) in order to identify genes responsible for the increased propensity of Notchl-deleted ES cells to produce cardiomyocytes. Using RNA-sequencing, we found approximately 300 coding and noncoding transcripts, which are differently expressed in undifferentiated Notchl-deleted ES cells. Since accumulating evidences indicate that long noncoding RNAs (IncRNAs) play important roles in ES cell pluripotency and differentiation, we focused our analysis on modulated IncRNAs. In particular, two IncRNAs, named here lnc 1230 and lnc 1335, are highly induced in the absence of Notchl receptor expression. These represent therefore prime candidates that could favor cardiogenic commitment in undifferentiated ES cells. Indeed, we demonstrate that forced expression of these two IncRNAs in wild-type ES cells result in a significant increase of the number of cardiac progenitor cells and cardiomyocytes in the differentiated progeny of these ES cells. Furthermore, we also identify several microRNAs that are differentially modulated in absence of Notchl expression. Among these are miR-142-5p and miR- 381-3p. Interestingly, both lncl230 and lncl335 are targets of these two microRNAs. Altogether, these data suggest that Notchl-dependent noncoding gene networks, implicating microRNAs and IncRNAs, control embryonic stem cell commitment into the mesodermal and cardiac lineages already at the undifferentiated state. - Les cardiomyocytes issus cellules souches embryonnaires sont une source très prometteuse pour les thérapies cellulaire de remplacement dans le cadre des maladies cardiaques. Cependant, l'utilisation de telles cellules requiert une compréhension poussée des mécanismes moléculaire régulant la différenciation. Nous avons par le passé démontré que la différenciation des cellules souches embryonnaires en cardiomyocytes est favorisée par l'inactivation de la voie d'activation intracellulaire dépendante du récepteur Notch 1. Nous avons donc comparé deux lignées de cellules souches embryonnaires, une présentant une voie d'activation Notchl normale et une chez laquelle les allèles codant pour le récepteur Notchl avaient été invalidés, de façon à identifier les gènes impliqués dans la capacité augmentée des cellules déficientes à produire des cardiomyocytes. En utilisant du séquençage d'ARN à haut débit, nous avons trouvé environ 300 gènes différemment exprimés dans les cellules déficientes pour Notchl. Par ailleurs, des évidences de plus en plus nombreuses suggèrent qu'une nouvelle classe de molécules appelée « long noncoding RNAs » joue un rôle prépondérant dans la maintenance de l'état non différencié et de la capacité de différenciation des cellules souches embryonnaires. Nous avons trouvé que plusieurs « long noncoding RNAs » étaient modulés en l'absence de Notchl, et en particulier deux molécules que nous avons appelées lncl230 et lncl335. Ces derniers représentent des candidats potentiels devant permettre de favoriser la production de cardiomyocytes. Nous avons en effet démontré que la surexpression de ces deux candidats dans des cellules souches embryonnaires résultait en une surproduction de cardiomyocytes. De plus, nous avons également identifié plusieurs microRNAs dont l'expression était modulée dans les cellules souches embryonnaires déficientes dans la voie Notchl. De façon intéressante, parmi ces microRNAs, le miR-142-5p et le miR-381-3p sont capables de cibler lncl230 and lncl335. Dans l'ensemble, ces résultats indiquent donc que des réseaux d'interaction dépendant de la voie d'activation Notch 1 et impliquant des ARNs non codant existent dans les cellules souches embryonnaires pour réguler leur différenciation en différent types cellulaires spécifiques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, the mTOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Micro RNAs are small, non-coding, single-stranded RNAs that negatively regulate gene expression at the post-transcriptional level. Since miR-143 was found to be down-regulated in prostate cancer cells, we wanted to analyze its expression in human prostate cancer, and test the ability of miR-43 to arrest prostate cancer cell growth in vitro and in vivo. Results: Expression of miR-143 was analyzed in human prostate cancers by quantitative PCR, and by in situ hybridization. miR-143 was introduced in cancer cells in vivo by electroporation. Bioinformatics analysis and luciferase-based assays were used to determine miR-143 targets. We show in this study that miR-143 levels are inversely correlated with advanced stages of prostate cancer. Rescue of miR-143 expression in cancer cells results in the arrest of cell proliferation and the abrogation of tumor growth in mice. Furthermore, we show that the effects of miR-143 are mediated, at least in part by the inhibition of extracellular signal-regulated kinase-5 (ERK5) activity. We show here that ERK5 is a miR-143 target in prostate cancer. Conclusions: miR-143 is as a new target for prostate cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross-talk between different cell types plays central roles both in cardiac homeostasis and in adaptive responses of the heart to stress. Cardiomyocytes (CMs) send biological messages to the other cell types present in the heart including endothelial cells (ECs) and fibroblasts. In turn, CMs receive messages from these cells. Recent evidence has now established that exosomes, nanosized secreted extracellular vesicles, are crucial mediators of such messages. CMs, ECs, cardiac fibroblasts, and cardiac progenitor cells (CPCs) release exosomes carrying nonrandom subsets of proteins, lipids, and nucleic acids present in their cells of origin. Exosomes secreted from CMs are internalized by fibroblasts and regulate gene expression in these cells as well as in ECs. CPC-derived exosomes protect CMs against apoptosis while also stimulating angiogenesis. They are rich in cardioprotective and proangiogenic microRNAs such as miR-146, miR-210, and miR-132. When injected into infracted hearts in vivo, CPC-derived exosomes reduce infarct size and improve cardiac function. Thus, exosomes are emerging both as key mediators of intercellular communication in the heart and as therapeutic candidates for heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression usually producing translational repression and gene silencing. High-throughput sequencing technologies have revealed heterogeneity at length and sequence level for the majority of mature miRNAs (IsomiRs). Most isomiRs can be explained by variability in either Dicer1 or Drosha cleavage during miRNA biogenesis at 5" or 3" of the miRNA (trimming variants). Although isomiRs have been described in different tissues and organisms, their functional validation as modulators of gene expression remains elusive. Here we have characterized the expression and function of a highly abundant miR-101 5"-trimming variant (5"-isomiR-101). Results The analysis of small RNA sequencing data in several human tissues and cell lines indicates that 5"-isomiR-101 is ubiquitously detected and a highly abundant, especially in the brain. 5"- isomiR-101 was found in Ago-2 immunocomplexes and complementary approaches showed that 5"-isomiR-101 interacted with different members of the silencing (RISC) complex. In addition, 5"-isomiR-101 decreased the expression of five validated miR-101 targets, suggesting that it is a functional variant. Both the binding to RISC members and the degree of silencing were less efficient for 5"-isomiR-101 compared with miR-101. For some targets, both miR-101 and 5"-isomiR-101 significantly decreased protein expression with no changes in the respective mRNA levels. Although a high number of overlapping predicted targets suggest similar targeted biological pathways, a correlation analysis of the expression profiles of miR-101 variants and predicted mRNA targets in human brains at different ages, suggest specific functions for miR-101- and 5"-isomiR-101. Conclusions These results suggest that isomiRs are functional variants and further indicate that for a given miRNA, the different isomiRs may contribute to the overall effect as quantitative and qualitative fine-tuners of gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose-induced insulin secretion is an essential function of pancreatic β-cells that is partially lost in individuals affected by Type 2 diabetes. This unique property of β-cells is acquired through a poorly understood postnatal maturation process involving major modifications in gene expression programs. Here we show that β-cell maturation is associated with changes in microRNA expression induced by the nutritional transition that occurs at weaning. When mimicked in newborn islet cells, modifications in the level of specific microRNAs result in a switch in the expression of metabolic enzymes and cause the acquisition of glucose-induced insulin release. Our data suggest microRNAs have a central role in postnatal β-cell maturation and in the determination of adult functional β-cell mass. A better understanding of the events governing β-cell maturation may help understand why some individuals are predisposed to developing diabetes and could lead to new strategies for the treatment of this common metabolic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La grande majorité des organismes vivants ont développé un système d'horloges biologiques internes, appelées aussi horloges circadiennes, contrôlant l'expression de gênes impliqués dans de nombreux processus moléculaires et comportementaux. Au cours de la dernière décennie, des analyses « microarray » et séquençages à haut débit sur divers tissus de mammifères, indiquent que jusqu'à 20% du transcriptome serait sous contrôle circadien. Il était jusqu'à présent admis que la majorité des ARNm ayant une accumulation rythmique était générée par une transcription qui était elle-même rythmique. Toutefois, de récentes études ont suggéré qu'une proportion considérable des ARNm cycliques serait en fait générée par des mécanismes post-transcriptionnelles, incluant une régulation par micro-ARN (miARN). Lorsque j'ai débuté mon travail de thèse, l'influence des miARN sur l'expression des gènes circadiens, au niveau pangénomique, était encore méconnue. Par l'utilisation d'un modèle murin, dont la biogenèse des miARN a été spécifiquement désactivée au niveau des cellules hépatiques (knockout conditionnel pour Dicer), je me suis donc intéressée au rôle que jouaient ces molécules régulatrices sur la rythmicité de l'expression génique dans le foie. Des séquençages sur l'ensemble du transcriptome révèlent que l'horloge interne du foie est étonnement résistante à la perte totale des miARN. Nous avons cependant trouvé que les miARN agissent de façon importante sur la régulation de l'expression des gènes contrôlés par l'horloge moléculaire. La corégulation par les miARN, affectant jusqu'à 30% des gènes transcrits de façon rythmiques, conduit ainsi à une modulation de phase et d'amplitude du rythme de l'abondance des ARNm. En revanche, seuls peu de transcrits dépendent uniquement des miARN pour la rythmicité de leur accumulation. Enfin, mon travail met en évidence plusieurs miARN spécifiques, qui semblent préférentiellement moduler l'expression des gènes cycliques et permet l'identification de voies hépatiques particulièrement sujettes à une double régulation par les miARN et l'horloge biologique interne. La première masse d'analyses a essentiellement porté sur le rôle que jouent les miARN au niveau de l'expression des gènes contrôlés par l'horloge interne. Dans deux études de suivi, je me suis penchée sur deux aspects supplémentaires et complémentaires de la manière dont les miARN et l'oscillation de l'expression des gènes interagissent. Dans les hépatocytes murins, spécifiquement privés de Dicer, je me suis demandée si un phénotype horloge avait pu être masqué, dû à un entraînement stable de l'horloge du foie par l'horloge maîtresse du cerveau. J'ai donc commencé une série d'expériences ambitieuses (impliquant la mesure de la rythmicité du foie in vivo, chez l'animal vivant) afin de déséquilibrer l'entrainement de l'horloge hépatique via l'utilisation d'un protocole nutritionnel spécifique. Les premiers résultats suggèrent que dans des conditions où l'animal subit une restriction alimentaire pendant la journée, les miARN sont importants dans la cinétique d'adaptation des organes périphériques à un nouvel horaire de sustentation. Dans une deuxième ligne de recherche, j'ai plus profondément étudié quels seraient les miARN responsables des rythmes post-transcriptionnels des ARNm, en utilisant le séquençage de « small » ARN sur 24h. L'analyse est en cours et se poursuivra après l'obtention de mon diplôme. De façon générale, mon travail révèle d'importants et nouveaux rôles des miARN dans la modulation de l'expression circadienne des gènes hépatiques. De plus, le set de données générées dans l'étude déjà publiée, peut dorénavant servir de ressource valable pour de prochaines investigations sur le rôle physiologique que les miARN jouent au niveau du foie. -- Most living organisms have developed internal timing systems, called circadian clocks, to drive the rhythmic expression of genes involved in many molecular and behavioral processes. Over the last decade, microarray analyses and high- throughput sequencing from various mammalian tissues have indicated that up to 20% of the transcriptome are under circadian control. It was generally assumed that the majority of rhythmic mRNA accumulation is generated by rhythmic transcription. However, recent studies have suggested that a considerable proportion of mRNA cycling may actually be generated by post-transcriptional mechanisms, including by microRNAs. When I started my thesis work, it was still unknown how miRNAs influence circadian gene expression in a genome-wide fashion. Using a mouse model in which miRNA biogenesis can be inactivated in hepatocytes (conditional Dicer knockout mouse), I have thus addressed the role that these regulatory molecules play in rhythmic gene expression in the liver. Whole transcriptome sequencing revealed that the hepatic core clock was surprisingly resilient to total miRNA loss. However, we found that miRNAs acted as important regulators of clock-controlled gene expression. Co- regulation by miRNAs, which affected up to 30% of rhythmically transcribed genes, thus led to the modulation of phases and amplitudes of mRNA abundance rhythms. By contrast, only very few transcripts were strictly dependent on miRNAs for their rhythmic accumulation. Finally, my work highlights several specific miRNAs that appear to preferentially modulate cyclic gene expression, and identifies pathways in the liver that are particularly prone to dual regulation through miRNAs and the clock. The first bulk of analyses mainly dealt with the role that miRNAs play at the level of rhythmic clock output gene expression. In two follow-up studies I further delved into two additional, complementary aspects of how miRNAs and gene expression oscillations interact. First, I addressed whether a core clock phenotype in the hepatocyte-specific Dicer knockout could have been masked due to the stable entrainment of the liver clock by the animals' master clock in the brain. I thus started a series of ambitious experiments (involving the in vivo recording of liver rhythms in live animals) to bring the stable entrainment of the liver clock out of equilibrium using specific feeding protocols. My first results suggest that under conditions when animals are challenged by food restriction to daytime, miRNAs are important for the kinetics of adapting to unusual mealtime in peripheral tissue. In a second line of research, I have more carefully investigated which miRNAs are responsible for post- transcriptional mRNA rhythms using small RNA sequencing around-the-clock. The analyses are ongoing and will be continued after my graduation. Overall, my work uncovered important and novel roles of miRNA activity in shaping hepatic circadian gene expression; moreover, the datasets collect in the published studies can serve as a valuable resource for further investigations into the physiological roles that miRNAs play in liver. -- L'alternance du jour et de la nuit dirige depuis longtemps la vie quotidienne des êtres humains et de la plupart des organismes sur terre. Ce cycle de 24 heures façonne beaucoup de changements comportementaux et physiologiques tels que la vigilance, la température corporelle et le sommeil. Les rythmes journaliers, appelés rythmes circadiens, sont dirigés par des horloges biologiques tournant dans presque chaque cellule du corps. Une structure dans le cerveau agit en tant qu'horloge maitresse pour synchroniser les horloges internes entre elles et en fonction des signaux de jour/nuit extérieurs. Dans les cellules "les gènes de l'horloge" sont activés et désactivés une fois par jour ce qui déclenche des cycles dans lesquels des protéines sont produites de manière circadienne. Ces rythmes protéiques sont spécialisés pour chaque tissu ou organe et peuvent les aider à réaliser leurs tâches quotidiennes. Les rythmes circadiens peuvent être générés d'autres manières n'impliquant pas directement les composants des gènes de l'horloge. Les ARN messagers (ARNm) sont des molécules intermédiaires dans la production de protéines à partir d'ADN. Dans le foie des souris jusqu'à 20% des molécules d'ARNm sont produites suivant des rythmes circadiens. Le foie réalise des tâches essentielles dans le contrôle du métabolisme incluant celui des hydrates de carbone, des graisses et du cholestérol. Un timing précis est important afin de traiter les substances nutritives correctement lors des repas il en résulte une variation des quantités de certains ARNm et protéines coïncidant avec les repas. Les microARNs constituent une autre classe de molécules ARN de très petite taille qui régulent l'efficacité de traduction des ARNm en protéines et la stabilité des ARNm. Lors de mon travail de thèse, j'ai exploré de manière approfondie l'influence de ces petits régulateurs sur les rythmes circadiens du foie de souris. Ces expériences qui impliquaient le "Knock-out" d'un gène essentiel à la production de microARNs montrent qu'au lieu de générer les rythmes des ARNm, les microARNs les ajustent pour répondre aux besoins spécifiques du foie comme assurer leur pic au bon moment de la journée. Le ciblage de microARNs spécifiques peut révéler de nouvelles stratégies pour rectifier ces rythmes lorsque par exemple les fonctions métaboliques ne fonctionnent plus normalement. -- The rising and setting of the sun have long driven the daily schedules of humans and most organisms on the earth. This 24-hr cycle shapes many behavioural and physiological changes, such as alertness, body temperature, and sleep. These daily rhythms, which are called circadian rhythms, are dictated by biological clocks that are ticking in almost every single cell of the body. A region in the brain acts as a master clock to synchronize the internal clocks with each other and with the outside light/dark cycles. In cells, "core clock genes" are turned on and off once per day, which triggers cycles that cause some proteins to be produced in a circadian manner. The protein rhythms are specialized to a particular tissue or organ, and may help them to carry out their designated daily tasks. However, circadian rhythms might also be produced by other ways that do not involve these core clock components. Messenger RNAs (mRNAs) are intermediate molecules in the production of proteins from DNA. In the mouse liver, up to 20% of mRNA molecules are produced in circadian cycles. The liver performs essential tasks that control metabolism-including that of carbohydrates, fats, and cholesterol. Precisely timing when certain mRNAs and proteins reach peaks and troughs in their activities to coincide with mealtimes is important for nutrients to be properly processed. Other RNA molecules called microRNAs, i.e. RNAs of very small size, regulate at which rate mRNA molecules are translated into proteins. In my thesis work, I have explored at the influence of these small regulators on circadian rhythms in the mouse liver in greater detail. These experiments, which involved "knocking out" a gene that is essential for the production of microRNAs, show that rather than generating the mRNA rhythms, the microRNAs appear to adjust them to meet the specific needs of the liver, such as ensuring that they peak at the right time-of-day. Targeting specific microRNA molecules may reveal new strategies to tweak these rhythms, which could help to improve conditions when metabolic functions go wrong.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most frequent and lethal primary brain tumor in adults. Accumulating evidence suggests that tumors comprise a hierarchical organization that is, at least partially, not genetically driven. Cells that reside at the apex of this hierarchy are commonly referred to as cancer stem cells (CSCs) and are believed to largely contribute to recurrence and therapeutic failure. Although the complexity of epigenetic regulation of the genome precludes prediction as to which epigenetic changes dominate CSC specification in different cancer types, the ability of microRNAs (miRNAs) to fine-tune expression of entire gene networks places them among prime candidates for establishing CSC properties. In this study we characterized the miRNA expression profile of primary GBM grown either under conditions that enrich for GSCs or their differentiated non-tumorigenic progeny (DGCs). Although, we identified a subset of miRNAs that was strongly differentially expressed between GSCs and DGCs, we observed that in GSCs both let-7 and, paradoxically, their target genes are highly expressed, suggesting protection against let-7 action. Using PAR-CLIP we show that insulin-like growth factor-2 mRNA-binding protein 2 (IMP2) provides a mechanism for let-7 target gene protection that represents an alternative to LIN28A/B, which abrogates let-7 biogenesis in normal embryonic and certain malignant stem cells. By direct binding to miRNA recognition elements, IMP2 protects its targets from let-7 mediated decay. Importantly, depletion of IMP2 in GSCs strongly impairs their self- renewal properties and tumorigenicity in vivo, a phenotype that can be rescued by expression of LIN28B, suggesting that IMP2 mainly contributes to GSC maintenance by protecting let-7 target genes from silencing. Using mouse models, we show that depletion of IMP2 in neural stem cells (NSCs) induces let-7 target gene down-regulation, impairs their clonogenic capacity, and affects differentiation. Taken together, our observations describe a novel regulatory function of IMP2 in the let-7 axis whereby it supports GSC and NSC specification. Résumé (Français) Le glioblastome (GBM) est la tumeur primaire maligne du cerveau la plus fréquente. De nombreuses études ont démontré l'existence d'une organisation hiérarchique des cellules cancéreuses liée à des mécanismes épigénétiques. Les cellules qui se trouvent au sommet de cette hiérarchie sont appelées cellules souches cancéreuses (CSC), et contribuent à l'échec thérapeutique. Bien que la complexité des régulateurs épigénétiques permette difficilement de prédire quel mécanisme contribue le plus aux propriétés des CSC, la capacité des microRNAs (miRNAs) de réguler des réseaux entiers de gènes, les placent comme des candidats de premiers choix. Ici, nous avons caractérisé le profil d'expression des miRNAs dans des tumeurs primaires de GBM cultivées dans des conditions qui enrichissent soit pour les CSC, soit pour leur contrepartie de cellules cancéreuses différences (CCD). De manière surprenante et paradoxale la famille de miRNA let-7 et leurs gènes cibles étaient hautement exprimés dans les CSC, suggérant un mécanisme de protection contre l'action des let-7. Avec l'aide de la technologie PAR-CLIP, nous démontrons que la protéine IMP2, protège les mRNAs de l'action des let-7 et représente une alternative à Lin28A/B, qui d'ordinaire réprime fortement la maturation des let-7 dans les cellules souches embryonnaires et divers cancers. En se liant à la région ciblée par les let-7, IMP2 protège ses transcrits de l'action de cette classe de microRNA qui est tumoro-supressive. La déplétion d'IMP2 dans des CSC de GBM réduit fortement leur clonogénicité in vitro et leur tumorigénicité in vivo. Ceci peut être reversé en introduisant Lin28B dans des CSC de GBM, suggérant qu'IMP2 exerce ses fonctions pro-tumorigéniques en modulant l'axe let-7. Avec l'aide de modèles murins, nous observons que la déplétion de IMP2 dans les cellules souches neurales (CSN) induit une baisse de leur clonogénicité et des cibles des miRNAs let-7, suggérant une conservation de ce mécanisme entre les CSC de GBM et les CSN. En résumé, nos observations définissent une nouvelle fonction de IMP2 dans l'axe let-7 par lequel il contribue au maintien des propriétés des CSC et des CSN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.