929 resultados para Metal oxide inclusion
Resumo:
A new ultrafiltration membrane was developed by the incorporation of binary metal oxides inside polyethersulfone. Physico-chemical characterization of the binary metal oxides demonstrated that the presence of Ti in the TiO2?ZrO2 system results in an increase of the size of the oxides, and also their dispersity. The crystalline phases of the synthesized binary metal oxides were identified as srilankite and zirconium titanium oxide. The effect of the addition of ZrO2 can be expressed in terms of the inhibition of crystal growth of anocrystalline TiO2 during the synthesis process. For photocatalytic applications the band gap of the synthesized semiconductors was determined, confirming a gradual increase (blue shift) in the band gap as the amount of Zr loading increases. Distinct distributions of binary metal oxides were found along the permeation axis for the synthesized membranes. Particles with Ti are more uniformly dispersed throughout the membrane cross-section. The physico-chemical characterization of membranes showed a strong correlation between some key membrane properties and the spatial particle distribution in the membrane structure. The proximity of metal oxide fillers to the membrane surface determines the hydrophilicity and porosity of modified membranes. Membranes incorporating binary metal oxides were found to be promising candidates for wastewater treatment by ultrafiltration, considering the observed improvement influx and anti-fouling properties of doped membranes. Multi-run fouling tests of doped membranes confirmed the stability of permeation through membranes embedded with binary TiO2?ZrO2 particles.
Resumo:
The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.
Resumo:
Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.
Resumo:
Modification of TiO2 with metal oxide nanoclusters such as FeOx, NiOx has been shown to be a promising approach to the design of new photocatalysts with visible light absorption and improved electron–hole separation. To study further the factors that determine the photocatalytic properties of structures of this type, we present in this paper a first principles density functional theory (DFT) investigation of TiO2 rutile(110) and anatase(001) modified with PbO and PbO2 nanoclusters, with Pb2+ and Pb4+ oxidation states. This allows us to unravel the effect of the Pb oxidation state on the photocatalytic properties of PbOx-modified TiO2. The nanoclusters adsorb strongly at all TiO2 surfaces, creating new Pb–O and Ti–O interfacial bonds. Modification with PbO and PbO2 nanoclusters introduces new states in the original band gap of rutile and anatase. However the oxidation state of Pb has a dramatic impact on the nature of the modifications of the band edges of TiO2 and on the electron–hole separation mechanism. PbO nanocluster modification leads to an upwards shift of the valence band which reduces the band gap and upon photoexcitation results in hole localisation on the PbO nanocluster and electron localisation on the surface. By contrast, for PbO2 nanocluster modification the hole will be localised on the TiO2 surface and the electron on the nanocluster, thus giving rise to two different band gap reduction and electron–hole separation mechanisms. We find no crystal structure sensitivity, with both rutile and anatase surfaces showing similar properties upon modification with PbOx. In summary the photocatalytic properties of heterostructures of TiO2 with oxide nanoclusters can be tuned by oxidation state of the modifying metal oxide, with the possibility of a reduced band gap causing visible light activation and a reduction in charge carrier recombination.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence.
Resumo:
Zinc oxide (ZnO) nanopyramids were synthesized by a one-pot route in a non-aqueous and surfactantfree environment. The synthesized metal oxide was characterized using SEM, XRD, and TEM to investigate the surface morphology and crystallographic phase of the nanostructures. It was observed that the ZnO nanopyramids were of uniform size and symmetrical, with a hexagonal base and height of ∼100 nm. Gas sensing characterization of the ZnO nanopyramids when deposited as thin-film onto conductometric transducers were performed towards NOx and C2H5OH vapor of different concentrations over a temperature range of 22–350 ◦C. It was observed that the sensors responded towards NO2 (10 ppm) and C2H5OH(250 ppm) analytes best at temperatures of 200 and 260 ◦C with a sensor response of 14.5 and 5.72, respectively. The sensors showed satisfactory sensitivity, repeatability as well as fast response and recovery towards both the oxidizing and the reducing analyte. The good performance was attributed to the low amount of organic impurities, large surface-to-volume ratio and high crystallinity of the solvothermally synthesized ZnO nanopyramids.
Resumo:
The catalytic performance of Fe–Ni/PG (PG: palygorskite) catalysts pre-calcined and reduced at 500 ◦C for catalytic decomposition of tar derived through rice hull gasification was investigated. The materials were characterized by using X-ray diffraction, hydrogen temperature reduction, and transmission electron microscopy. The results showed that ferrites with spinel structure ((Fe, Ni)3O4) were formed during preparation of bimetallic systems during calcination and reduction of the precursors (Fe–Ni/PG catalysts) and NiO metal oxide particles were formed over Fe6–Ni9/PG catalyst. The obtained experimental data showed that Fe–Ni/PG catalysts had greater catalytic activity than natural PG. Tar removal using Fe6–Ni9/PG catalyst was as high as Fe10–Ni6/PG catalyst (99.5%). Fe6–Ni9/PG showed greater catalytic activity with greater H2 yield and showed stronger resistance to carbon deposition, attributed to the presence of NiO nanoparticles. Thus, the addition of nickel and iron oxides played an important role in catalytic cracking of rice hull biomass tar.
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
In this work, we investigate how hydrogen sensing performance of thermally evaporated MoO3 nanoplatelets can be further improved by RF sputtering a thin layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We show that dissociated hydrogen atoms cause the thin film layer to be polarised, inducing a measurable potential difference greater than that as reported previously. We attribute these observations to the presence of numerous traps in the thin layer; their states allow a stronger trapping of charge at the Pt-thin film oxide interface as compared to the MoO3 sensors without the coating. Under exposure to H2 (10 000 ppm) the maximum change in dielectric constant of 45.6 (at 260 °C) for the Ta2O5/MoO3 nanoplatelets and 31.6 (at 220 °C) for La2O3/MoO3 nanoplatelets. Subsequently, the maximum sensitivity for the Ta2O5/MoO3 is 16.87 (at 260 °C) and La2O3/MoO3 is 7.52 (at 300 °C).
Resumo:
Pt/anodized TiO2/SiC based metal-oxide-semiconductor (MOS) devices were fabricated and characterized for their sensitivity towards propene (C3H6). Titanium (Ti) thin films were deposited onto the SiC substrates using a filtered cathodic vacuum arc (FCVA) method. Fluoride ions containing neutral electrolyte (0.5 wt% NH4F in ethylene glycol)were used to anodize the Ti films. The anodized films were subsequently annealed at 600 °C for 4 hrs in an oxygen rich environment to obtain TiO2. The current-voltage(I-V) characteristics of the Pt/TiO2/SiC devices were measured in different concentrations of propene. Exposure to the analyte gas caused a change in the Schottky barrier height and hence a lateral shift in the I-V characteristics. The effective change in the barrier height for 1% propene was calculated as 32.8 meV at 620°C. The dynamic response of the sensors was also investigated and a voltage shift of 157 mV was measured at 620°C during exposure to 1% propene.
Resumo:
First-principles computational studies indicate that (B, N, or O)-doped graphene ribbon edges can substantially reduce the energy barrier for H2 dissociative adsorption. The low barrier is competitive with many widely used metal or metal oxide catalysts. This suggests that suitably functionalized graphene architectures are promising metal-free alternatives for low-cost catalytic processes.
Resumo:
A fuel additive comprising one or more complex oxides having a nominal compn. as set out in formula (1): AxB1-yMyOn; wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with at. no. 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with at. no. 25 to 30; x is defined as a no. where 0 < x ≤ l; y is defined as a no. where 0 ≤ y < 0.5. [on SciFinder(R)]
Resumo:
Despite a favourable morphology, anodized and ordered TiO2 nanotubes are incapable of showing electrochromic properties in comparison to many other metal oxide counterparts. To tackle this issue, MoO3 of 5 to 15 nm thickness was electrodeposited onto TiO2 nanotube arrays. A homogenous MoO3 coating was obtained and the crystal phase of the electrodeposited coating was determined to be α-MoO3. The electronic and optical augmentations of the MoO3 coated TiO2 platforms were evaluated through electrochromic measurements. The MoO3/TiO2 system showed a 4-fold increase in optical density over bare TiO2 when the thickness of the MoO3 coating was optimised. The enhancement was ascribed to (a) the α-MoO3 coating reducing the bandgap of the composite material, which shifted the band edge of the TiO2 platform, and subsequently increased the charge carrier transfer of the overall system and (b) the layered morphology of α-MoO3 that increased the intercalation probability and also provided direct pathways for charge carrier transfer.
Resumo:
A method for forming a material comprising a metal oxide supported on a support particle comprising the steps of: (a) providing a precursor mixt. comprising a soln. contg. one or more metal cations and (i) a surfactant; or (ii) a hydrophilic polymer; said precursor mixt. further including support particles; and (b) treating the precursor mixt. from (a) above by heating to remove the surfactant or hydrophilic polymer and form metal oxide having nanosized grains, wherein at least some of the metal oxide formed in step (b) is deposited on or supported by the support particles and the metal oxide has an oxide matrix that includes metal atoms derived solely from sources other than the support particles. The disclosure and examples pertain to emission control catalysts. [on SciFinder(R)]