907 resultados para Mesenchymal Stem Cells
Resumo:
Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O-2)) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O-2). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 mu mol/L at 1.5% O-2 to 196 mu mol/L at normoxic 21% O-2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase 3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1 alpha) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.
Resumo:
International audience
Resumo:
Mesenchymal stem cells (MSCs) have been used in cell replacement therapies for connective tissue damage, but also can stimulate wound healing through paracrine activity. In order to further understand the potential use of MSCs to treat dogs with neurological disorders, this study examined the paracrine action of adipose-derived canine MSCs on neuronal and endothelial cell models. The culture-expanded MSCs exhibited a MSC phenotype according to plastic adherence, cell morphology, CD profiling and differentiation potential along mesenchymal lineages. Treating the SH-SY5Y neuronal cell line with serum-free MSC culture-conditioned medium (MSC CM) significantly increased SH-SY5Y cell proliferation (P < 0.01), neurite outgrowth (P = 0.0055) and immunopositivity for the neuronal marker βIII-tubulin (P = 0.0002). Treatment of the EA.hy926 endothelial cell line with MSC CM significantly increased the rate of wound closure in endothelial cell scratch wound assays (P = 0.0409), which was associated with significantly increased endothelial cell proliferation (P < 0.05) and migration (P = 0.0001). Furthermore, canine MSC CM induced endothelial tubule formation in EA.hy926 cells in a soluble basement membrane matrix. Hence, this study has demonstrated that adipose-derived canine MSC CM stimulated neuronal and endothelial cells probably through the paracrine activity of MSC-secreted factors. This supports the use of canine MSC transplants or their secreted products in the clinical treatment of dogs with neurological disorders and provides some insight into possible mechanisms of action.
Resumo:
The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 μm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, εT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high εT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L.
Resumo:
2016
Resumo:
RESUMO: A geleia de Wharton é uma fonte de células tronco mesenquimais (CTMs) que ainda não havia sido testada para a produção de embriões bovinos por transferência nuclear (TN). O objetivo deste estudo foi isolar, caracterizar e testar as CTMs derivadas da geleia de Wharton para produção de embriões e gestações por transferência nuclear em bovinos. O cordão umbilical foi coletado durante o nascimento e as células derivadas da geleia de Wharton (CGWs) foram isoladas por explante e cultivadas em Dulbecco?s Modified Eagle Medium. Fibroblastos (FB) da pele foram isolados após 6 meses de vida. As análises morfológicas foram realizadas pelas microscopias de campo claro e eletrônica de varredura durante o cultivo celular. Caracterização fenotípica e genotípica por citometria de fluxo, imunocitoquímica, RT-PCR e indução da diferenciação em linhagens celulares foi realizada com as CGWs. No procedimento de TN, ovócitos no estágio de metáfase II foram enucleados usando micromanipuladores, fusionados com CGWs ou FB e então ativados artificialmente. Micrografias de microscopia de varredura revelaram que CGWs tiveram forma variada sob cultivo. Os marcadores mesenquimais de CTMs (CD29+, CD73+, CD90+ and CD105+) foram expressos em cultura de CGWs bovina, como evidenciado por citometria de fluxo, imunocitoquímica e RT-PCR. Quando induzidas, estas células diferenciaram-se em osteócitos, condrócitos e adipócitos. Após classificação, as CGWs foram utilizadas na TN. A taxa de formação de blastocistos por TN com CGWs no sétimo dia de cultivo foi de 25,80±0,03%, similar a produção de blastócitos por TN com fibroblastos de pele (19,00±0,07). Gestações foram obtidas e mostraram que CGWs constituem um novo tipo celular para ser usado na clonagem animal. ABSTRACT: Wharton?s jelly is a source of mesenchymal stem cells (MSCs) that had not yet been tested for bovine embryo production by nuclear transfer (NT). Thus, the objective of this study was to isolate, characterize and test MSCs derived from Wharton?s jelly for embryo and pregnancy production by NT in cattle. The umbilical cord was collected during calving and cells derived from Wharton?s jelly (WJCs) were isolated by explant and cultured in Dulbecco?s Modified Eagle Medium. Skin Fibroblasts (FB) were isolated after 6 months of life. Morphological analysis was performed by bright field and scanning electron microscopy (SEM) during cell culture. Phenotypic and genotypic characterization by flow cytometry, immunocytochemistry, RT-PCR and differentiation induction in cell lineages were performed for WJC. In the NT procedure, oocytes at the arrested metaphase II stage were enucleated using micromanipulators, fused with WJCs or FB and later activated artificially. SEM micrographs revealed that WJCs have variable shape under culture. Mesenchymal markers of MSCs (CD29+, CD73+, CD90+ and CD105+) were expressed in bovine-derived WJC cultures, as evidenced by flow cytometry, immunocytochemistry and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes and adipocytes. After classification, the WJCs were used in NT. Blastocyst formation rate by NT with WJCs at day 7 was 25.80±0.03%, similar to blatocyst rate with NT using skin fibroblasts (19.00±0.07%). Pregnancies were obtained and showed that WJCs constitute a new cell type for use in animal cloning.
Resumo:
Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.
Resumo:
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) represent promising cell sources for angiogenic therapies. There are, however, conflicting reports regarding the ability of MSCs to support network formation of endothelial cells. The goal of this study was to assess the ability of human bone marrow-derived MSCs to support network formation of endothelial outgrowth cells (EOCs) derived from umbilical cord blood EPCs. We hypothesized that upon in vitro coculture, MSCs and EOCs promote a microenvironment conducive for EOC network formation without the addition of angiogenic growth supplements. EOC networks formed by coculture with MSCs underwent regression and cell loss by day 10 with a near 4-fold and 2-fold reduction in branch points and mean segment length, respectively, in comparison with networks formed by coculture vascular smooth muscle cell (SMC) cocultures. EOC network regression in MSC cocultures was not caused by lack of vascular endothelial growth factor (VEGF)-A or changes in TGF-β1 or Ang-2 supernatant concentrations in comparison with SMC cocultures. Removal of CD45+ cells from MSCs improved EOC network formation through a 2-fold increase in total segment length and number of branch points in comparison to unsorted MSCs by day 6. These improvements, however, were not sustained by day 10. CD45 expression in MSC cocultures correlated with EOC network regression with a 5-fold increase between day 6 and day 10 of culture. The addition of supplemental growth factors VEGF, fibroblastic growth factor-2, EGF, hydrocortisone, insulin growth factor-1, ascorbic acid, and heparin to MSC cocultures promoted stable EOC network formation over 2 weeks in vitro, without affecting CD45 expression, as evidenced by a lack of significant differences in total segment length (p=0.96). These findings demonstrate the ability of MSCs to support EOC network formation correlates with removal of CD45+ cells and improves upon the addition of soluble growth factors.
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.
Resumo:
High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.
Resumo:
Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo
Resumo:
and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.
Resumo:
Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.
Resumo:
Introduction The clinically known importance of patient sex as a major risk factor for compromised bone healing is poorly reflected in animal models. Consequently, the underlying cellular mechanisms remain elusive. Because mesenchymal stem cells (MSCs) are postulated to regulate tissue regeneration and give rise to essential differentiated cell types, they may contribute to sex-specific differences in bone healing outcomes. Methods We investigated sex-specific variations in bone healing and associated differences in MSC populations. A 1.5 mm osteotomy gap in the femora of 8 male and 8 female 12-month-old Sprague-Dawley rats was stabilized by an external fixator. Healing was analyzed in terms of biomechanical testing, bridging and callus size over time (radiography at 2, 4, and 6 weeks after surgery), and callus volume and geometry by μCT at final follow-up. MSCs were obtained from bone marrow samples of an age-matched group of 12 animals (6 per gender) and analyzed for numbers of colony-forming units (CFUs) and their capacity to differentiate and proliferate. The proportion of senescent cells was determined by β-galactosidase staining. Results Sex-specific differences were indicated by a compromised mechanical competence of the callus in females compared with males (maximum torque at failure, p = 0.028). Throughout the follow-up, the cross-sectional area of callus relative to bone was reduced in females (p ≤ 0.01), and the bridging of callus was delayed (p 2weeks = 0.041). μCT revealed a reduced callus size (p = 0.003), mineralization (p = 0.003) and polar moment of inertia (p = 0.003) in female animals. The female bone marrow contained significantly fewer MSCs, represented by low CFU numbers in both femora and tibiae (p femur = 0.017, p tibia = 0.010). Functional characteristics of male and female MSCs were similar. Conclusion Biomechanically compromised and radiographically delayed bone formation were distinctive in female rats. These differences were concomitant with a reduced number of MSCs, which may be causative for the suboptimal bone healing.