957 resultados para Menofenol mono-oxigenese
Resumo:
Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a d-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-a dagger 1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. d-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose) l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.
Resumo:
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.
The effect of the generation and handling in the acquired electrostatic charge in airborne particles
Resumo:
The measurement of the charge distribution in laboratory generated aerosols particles was carried out. Four cases of electrostatic charge acquisition by aerosol particles were evaluated. In two of these cases. the charges acquired by the particles were naturally derived from the aerosol generation procedure itself, without using any additional charging method. Ill the other two cases, a corona charger and an impact charger were utilized as Supplementary methods for charge generation. Two types of aerosol generators were used in the dispersion of particles in the gas Stream: the vibrating orifice generator TSI model 3450 and the rotating plate generator TSI model 3433. In the vibrating orifice generator. a Solution of methylene blue Was used and the generated particles were mono-dispersed. Different mono-aerosols were generated with particle diameters varying from 6.0 x 10(-6) m to 1.4 x 10(-5) m. In the rotating plate generator, a poly-dispersed phosphate rock concentrate with Stokes mean diameter of 1.30 x 10(-6) m and size range between 1.5 x 10(-7) m and 8.0 x 10(-6) m Was utilized as powder material in all tests. In the tests performed with the mono-dispersed particles. the median charges of the particles varied between -3.0 x 10-(16) C and -5.0 x 10(-18) degrees C and a weak dependence between particle size and charge was observed. The particles were predominantly negatively charged. In the tests with the poly-dispersed particles the median charges varied fairly linearly with the particle diameter and were negative. The order of magnitude of the results obtained is in accordance with data reported in the literature. The charge distribution, in this case, was wider, so that an appreciable amount of particles were positively charged. The relative spread of the distribution varied with the charging method. It was also noticed that the corona charger acted very effectively in charging the particles. (C) 2008 Elsevier BY. All rights reserved.
Resumo:
The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The behaviour of cis isomers of selected mono- and di-acyl chlorogenic acids produced by UV-irradiation has been investigated by LC-MSn. cis Isomers fragment identically to the more common trans isomers. cis-5-Acyl chlorogenic acids are more hydrophobic and elute later than their mono- or di-trans counterparts whereas the reverse is true for cis-3-acyl and cis-4-acyl chlorogenic acids. The cis isomers of 1,3-dicaffeoylquinic acid, the only I-acyl chlorogenic acid investigated, are also more hydrophobic than the di-trans isomer. Coffee leaves had a proportionately greater content of cis isomers relative to trans isomers compared with coffee beans suggesting that UV-irradiation in vivo may also cause geometric isomerisation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Inulin was used as a prebiotic to improve quality of skim milk fermented by pure cultures of Lactobacillus acidophilus Lactobacillus rhamnosus Lactobacillus bulgaricus and Bifidobacterium lactis binary co-cultures with Streptococcus thermophilus or a cocktail containing all them Inulin supplementation to pure cultures lowered the generation time with particular concern to S thermophilus and L acidophilus The generation time of all micro-organisms decreased in the following order mono-cultures co-cultures cocktail It was demonstrated a synergism between S thermophilus and the other strains and a bifidogenic effect of inulin Enumerations of L rhamnosus in cocktail markedly decreased compared to co-cultures likely because of greater competition for the same substrates The results of this work highlight the industrial potential of the cocktail mainly in terms of fermentation acceleration (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to develop a method for the stereoselective analysis of thioridazine-2-sulfoxide (THD-2-SO) and thioridazine-5-sulfoxide (THD-5-SO) in culture medium and to study the biotransformation of rac-thioridazine (THD) by some endophytic fungi. The simultaneous resolution of THD-2-SO and THD-5-SO diastereoisomers was performed on a CHIRALPAK(R) AS column using a mobile phase of hexane: ethanol: methanol (92:6:2, v/v/v) + 0.5% diethylamine; UV detection was carried out at 262 nm. Diethyl ether was used as extractor solvent. The validated method was used to evaluate the biotransformation of THD by 12 endophytic fungi isolated from Tithonia diversifolia, Viguiera arenaria and Viguiera robusta. Among the 12 fungi evaluated, 4 of them deserve prominence for presenting an evidenced stereoselective biotransformation potential: Phomopsis sp. (TD2) presented greater mono-2-sulfoxidation to the form (S)-(SE) (12.1%); Glomerella cingulata (VA1) presented greater mono-5-sulfoxidation to the forms (S)-(SE) + (R)-(FE) (10.5%); Diaporthe phaseolorum (VR4) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(FE) (84.4% and 82.5%, respectively) and Aspergillus fumigatus (VR12) presented greater mono-2-sulfoxidation to the forms (S)-(SE) and (R)-(SE) (31.5% and 34.4%, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Topical delivery of lycopene is a convenient way to supplement cutaneous levels of antioxidants. In this study, lycopene was incorporated (0.05%, w/w) in two microemulsions containing BRIJ-propylene glycol (2:1, w/w, surfactant blend) but different oil phases: mono/diglycerides of capric and caprylic acids (MG) or triglycerides of the same fatty acids (TG). Microemulsions containing MG and TG were isotropic, fluid, and clear, with internal phase diameters of 27 and 52 nm, respectively. Both MG- or TG-containing microemulsions markedly increased lycopene penetration in the stratum corneum, (6- and 3.6-fold, respectively) and in viable layers of porcine ear skin 2 (from undetected to 172.6 +/- 41.1 and 103.1 +/- 7.2 ng/cm(2), respectively) compared to a control solution. To assure that lycopene delivered to the skin was active, the antioxidant activity of skin treated with MG-containing microemulsion was determined by CUPRAC assay, and found to be 10-fold higher than untreated skin. The cytotoxicity of MG-containing microemulsion in cultured fibroblasts was similar to propylene glycol (considered safe) and significantly less than of sodium lauryl sulfate (a moderate-to-severe irritant) at 1-50 mu g/mL. These results demonstrate that the MG-containing microemulsion is an efficient and safe system to increase lycopene delivery to the skin and the antioxidant activity in the tissue. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:1346-1357, 2010
Resumo:
A novel nucleation apparatus is presented for the production of narrow sized nuclei from various powder and binder liquid combinations. Mono-sized binder liquid droplets are produced by a specially designed mono-disperse droplet generator. The droplet generator is positioned above a conveyor belt, transporting a powder bed through the spray zone of the droplet generator. By nucleating powder on a conveyer belt, the nucleation mechanism is completely separated from all other granulation mechanisms due to the lack of relative motion between primary particles and/or formed nuclei. Nucleation tests were performed using chalcopyrite and limestone powders with water as the binder liquid. At all operating conditions, the formed nuclei were found to originate from multiplicities of drops that merged on the powder bed surface. Investigation of the dynamics of nuclei formation showed that powder-binder liquid combinations with fast penetration dynamics result in less variation in the number of droplets from which nuclei originate. Smaller and more narrowly distributed nuclei were also achieved by increasing powder speed through the spray zone.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
Resumo:
A new cyclic octapeptide, cyclo(Ile-Ser-(Gly)Thz-Ile-Thr-(Gly)Thz) (PatN), related to patellamide A, has been synthesized and reacted with copper(II) and base to form mono- and dinuclear complexes. The coordination environments around copper(TI) have been characterized by EPR spectroscopy. The solution structure of the thermodynamically most stable product, a purple dicopper(TI) compound, has been examined by simulating weakly dipole-dipole coupled EPR spectra based upon structural parameters obtained from force field (MM and MD) calculations. The MM-EPR method produces a saddle-shaped structure for [Cu-2(PatN)(OH2)(6)] that is similar to the known solution structure of patellamide A and the known solid-state structure of [Cu-2(AscidH(2))CO3(OH2)(2)]. Compared with the latter, [Cu-2(PatN)] has no carbonate bridge and a significantly flatter topology. The MM-EPR approach to solution-structure determination for paramagnetic metallopeptides may find wide applications to other metallopeptides and metalloproteins.
Resumo:
.:Abstract-Objective: Bioelectrical impedance analysis (BIA) is widely used as bedside assessment of body composition. Body cell mass (BCM) and intracellular water (ICW) are clinically important body compartments. Estimates of ICW obtained from BIA by different calculation approaches were compared to a reference method in male HIV-infected patients. Patients: Representative subsample of clinically stable HIV-infected outpatients, consisting of 42 men with a body mass index of 22.4 +/- 3.8 kg/m(2) (range, 13-31 kg/m(2)). Methods: Total body potassium was assessed in a whole body counter, and compared to 50 kHz mono-frequency BIA and multifrequency bioelectrical impedance spectroscopy. Six different prediction equations for ICW from BIA data were applied. Methods were compared by the Bland-Altman method. Results: BIA-derived ICW estimates explained 58% to 73% of the observed variance in ICW (TBK), but limits of confidence were wide (-16.6 to +18.2% for the best method). BIA overestimated low ICW (TBK) and underestimated high ICW (TBK) when normalized for weight or height. Mono- and multifrequency BIA were not different in precision but population-specific equations tended to narrower confidence limits. Conclusion: BIA is an unreliable method to estimate ICW in this population, in contrast to the better established estimation of total body water and extracellular water. Potassium depletion in severe malnutrition may contribute to this finding but a major part of the residual between methods remains unexplained. (C) 2000 Harcourt Publishers Ltd.
Resumo:
The salticid spider Cosmophasis bitaeniata preys on the larvae of the green tree ant Oecophylla smaragdina. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) reveal that the cuticle of C. bitaeniata mimics the mono- and dimethylalkanes of the cuticle of its prey. Recognition bioassays with extracts of the cuticular hydrocarbons of ants and spiders revealed that foraging major workers did not respond aggressively to the extracts of the spiders or conspecific nestmates, but reacted aggressively to conspecific nonnestmates. Typically, the ants either failed to react (as with control treatments with no extracts) or they reacted nonaggressively as with conspecific nestmates. These data indicate that the qualitative chemical mimicry of ants by C. bitaeniata allows the spiders to avoid detection by major workers of O. smaragdina.
Resumo:
This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.