973 resultados para Memory B-cell immune response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways. CONCLUSIONS/SIGNIFICANCE: W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P fimbriae are proteinaceous appendages on the surface of Escherichia coli bacteria that mediate adherence to uroepithelial cells. E. coli that express P fimbriae account for the majority of ascending urinary tract infections in women with normal urinary tracts. The hypothesis that P fimbriae on uropathic E. coli attach to renal epithelia and may regulate the immune response to establish infection was investigated. The polymeric Ig receptor (pIgR), produced by renal epithelia, transports IgA into the urinary space. Kidney pIgR and urine IgA levels were analyzed in a mouse model of ascending pyelonephritis, using E. coli with (P+) and without (P-) P fimbriae, to determine whether P(+) E. coli regulate epithelial pIgR expression and IgA transport into the urine. (P+) E. coli establish infection and persist to a greater amount than P(-) E. coli. P(+)-infected mice downregulate pIgR mRNA and protein levels compared with P(-)-infected or PBS controls at > or =48 h. The decrease in pIgR was associated with decreased urinary IgA levels in the P(+)-infected group at 48 h. pIgR mRNA and protein also decline in P(+) E. coli-infected LPS-hyporesponsive mice. These studies identify a novel virulence mechanism of E. coli that express P fimbriae. It is proposed that P fimbriae decrease pIgR expression in the kidney and consequently decrease IgA transport into the urinary space. This may explain, in part, how E. coli that bear P fimbriae exploit the immune system of human hosts to establish ascending pyelonephritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The harmful dinoflagellate Prorocentrum minimum has different effects upon various species of grazing bivalves, and these effects also vary with life-history stage. Possible effects of this dinoflagellate upon mussels have not been reported; therefore, experiments exposing adult blue mussels, Mytilus edulis, to P. minimum were conducted. Mussels were exposed to cultures of toxic P. minimum or benign Rhodomonas sp. in glass aquaria. After a short period of acclimation, samples were collected on day 0 (before the exposure) and after 3, 6, and 9 days of continuous-exposure experiment. Hemolymph was extracted for flow-cytometric analyses of hemocyte, immune-response functions, and soft tissues were excised for histopathology. Mussels responded to P. minimum exposure with diapedesis of hemocytes into the intestine, presumably to isolate P. minimum cells within the gut, thereby minimizing damage to other tissues. This immune response appeared to have been sustained throughout the 9-day exposure period, as circulating hemocytes retained hematological and functional properties. Bacteria proliferated in the intestines of the P. minimum-exposed mussels. Hemocytes within the intestine appeared to be either overwhelmed by the large number of bacteria or fully occupied in the encapsulating response to P. minimum cells; when hemocytes reached the intestine lumina, they underwent apoptosis and bacterial degradation. This experiment demonstrated that M. edulis is affected by ingestion of toxic P. minimum; however, the specific responses observed in the blue mussel differed from those reported for other bivalve species. This finding highlights the need to study effects of HABs on different bivalve species, rather than inferring that results from one species reflect the exposure responses of all bivalves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular immune response to the circumsporozoite (CS) protein of plasmodium vivax of individuals from malaria-endemic areas of Brazil was studied. We examined the in vitro proliferative response of the peripheral blood mononuclear cells (PBMC) of 22 individuals when stimulated with a CS recombinant protein (rPvCS-2) and two other synthetic peptides based on the sequenceof the P. vivax CS protein. Seven of the individuals from malaria-endemic area displayed an antigen specific in vitro proliferative responseto the recombinant protein PvCS-2 and one out of 6, proliferative response to the peptide 308-320. In contrast, none of the individuals displayed a proliferative reponse when stimulated with the D/A peptide which represent some of the repeated units present in this CS protein. Our study, therefore, provides evidence for the presence, withinthe major surface antigen of P. vivax sporozoites, of epitopes capble to induce proliferation of human PBMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced) stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced) triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Plasmodium falciparum protein fractions, isolated under reducing conditions, were used to immunize mice, rabbits and the squirrel monkey Saimiri sciureus. Five or seven subcutaneous injections of each antigenic preparation, in conjunction with Freund's complete or incomplete adjuvants, were administered. This led to the development of specific antibodies detected by IFAT, ELISA or immunobloting which inhibited merozoite reinvasion in in vitro P. falciparum cultures. This activity seems to be associated with rhoptry proteins contained in fractions Pf F2 and Pf F4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efforts to characterize HIV-1 polymorphism and anti-HIV immune response are being made in areas where anti-HIV/AIDS vaccines are to be employed. Anti-HIV-1 humoral immune response is being studied in infected individuals resident in Rio de Janeiro, in distinct cohorts involving recent seroconvertors, pregnant women or intravenous drug users (IDU). Comparative analyses of specificity of antibody response towards epitopes important for anti-HIV-1 immune response indicate quantitative differences between cohorts, with an exceptionally strong response in IDUs and weakest response in pregnant women. However, a comparative analysis between pregnant women cohorts from Rio de Janeiro and Rio Grande do Sul indicated an even lower response (with exception of the anti-V3-C clade peptide recognition) for the southern cohort. Studies analysing the immune function of the humoral response indicate a quite elevated occurrence of antibodies capable of neutralizing heterologous primary HIV-1 isolates from Rio de Janeiro. Attempts to correlate seroreactivity with HIV-1 neutralization with respect to HIV-1 polymorphism were not very successfull: while the Brazilian B clade B" variant could be recognized by binding assays, no significant distinction of HIV-1 clades/variants was observed in viral neutralization assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An atypical case of acquired immunodeficiency syndrome-associated mucocutaneous lesions due to Leishmania braziliensis is described. Many vacuolated macrophages laden with amastigote forms of the parasite were found in the lesions. Leishmanin skin test and serology for leishmaniasis were both negative. The patient was resistant to therapy with conventional drugs (antimonial and amphotericin B). Interestingly, remission of lesions was achieved after an alternative combined therapy of antimonial associated with immunotherapy (whole promastigote antigens). Peripheral blood mononuclear cells were separated and stimulated in vitro with Leishmania antigens to test the lymphoproliferative responses (LPR). Before the combined immunochemotherapy, the LPR to leishmanial antigens was negligible (stimulation index - SI=1.4). After the first course of combined therapy it became positive (SI=4.17). The antigen responding cells were predominantly T-cells (47.5%) most of them with CD8+ phenotype (33%). Very low CD4+ cells (2.2%) percentages were detected. The increased T-cell responsiveness to leishmanial antigens after combined therapy was accompanied by interferon-g (IFN-g) production as observed in the cell culture supernatants. In this patient, healing of the leishmaniasis lesions was associated with the induction of a specific T-cell immune response, characterized by the production of IFN-g and the predominance of the CD8+ phenotype among the Leishmania-reactive T-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directional selection for parasite resistance is often intense in highly social host species. Using a partial cross-fostering experiment we studied environmental and genetic variation in immune response and morphology in a highly colonial bird species, the house martin (Delichon urbica). We manipulated intensity of infestation of house martin nests by the haematophagous parasitic house martin bug Oeciacus hirundinis either by spraying nests with a weak pesticide or by inoculating them with 50 bugs. Parasitism significantly affected tarsus length, T cell response, immunoglobulin and leucocyte concentrations. We found evidence of strong environmental effects on nestling body mass, body condition, wing length and tarsus length, and evidence of significant additive genetic variance for wing length and haematocrit. We found significant environmental variance, but no significant additive genetic variance in immune response parameters such as T cell response to the antigenic phytohemagglutinin, immunoglobulins, and relative and absolute numbers of leucocytes. Environmental variances were generally greater than additive genetic variances, and the low heritabilities of phenotypic traits were mainly a consequence of large environmental variances and small additive genetic variances. Hence, highly social bird species such as the house martin, which are subject to intense selection by parasites, have a limited scope for immediate microevolutionary response to selection because of low heritabilities, but also a limited scope for long-term response to selection because evolvability as indicated by small additive genetic coefficients of variation is weak.