890 resultados para Material properties
Resumo:
Living cells are the functional unit of organs that controls reactions to their exterior. However, the mechanics of living cells can be difficult to characterize due to the crypticity of their microscale structures and associated dynamic cellular processes. Fortunately, multiscale modelling provides a powerful simulation tool that can be used to study the mechanical properties of these soft hierarchical, biological systems. This paper reviews recent developments in hierarchical multiscale modeling technique that aimed at understanding cytoskeleton mechanics. Discussions are expanded with respects to cytoskeletal components including: intermediate filaments, microtubules and microfilament networks. The mechanical performance of difference cytoskeleton components are discussed with respect to their structural and material properties. Explicit granular simulation methods are adopted with different coarse-grained strategies for these cytoskeleton components and the simulation details are introduced in this review.
Resumo:
Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.
Resumo:
Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.
Resumo:
Arthropods are known to use silk for a number of different purposes including web construction, shelter building, leaf tying, construction of pupal cocoons, and as a safety line when dislodged from a substrate (Alexander, 1961; Fitzgerald, 1983; Common, 1990). Across the arthropods, silk displays a diversity of material properties and chemical constituents and is produced from glands with different evolutionary origins (Craig, 1997). Among insects, larval Lepidoptera are prolific producers of silk. Because many lepidopteran larvae are pests, an ability to interfere with silk production or, at the very least, an understanding of how silk is used, could provide new options for pest control. After testing many known fluorescent dyes, we found that Fluorescent Brightener 28 (also known as Calcofluor White M2R) (Sigma-Aldrich Pty Ltd, Sydney, NSW, Australia), an optical brightener used in the textile industry, binds to arthropod silk in a simple staining reaction, causing it to fluoresce under ultraviolet (UV) light. Such brighteners have also been used in insect gut content analysis (Schlein & Muller, 1995; Hugo et al., 2003). Here we describe the method of visualizing arthropod silk on plant surfaces, using as a model the thin, barely visible, single strands of silk produced by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonates.
Resumo:
It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.
Resumo:
Understanding the polymerization mechanism of a precursor is indispensable to enhance the requisite material properties. In situ mass spectroscopy and X-ray photoelectron spectroscopy is used in this study to understand the RF plasma polymerization of γ-terpinene. High-resolution mass spectra positive ion mass spectrometry data of the plasma phase demonstrates the presence of oligomeric species of the type [M+H]+ and [2M+H]+, where M represents a unit of the starting material. In addition, there is abundant fragmented species, with most dominant being [M+] (136 m/z), C10H13+ (133 m/z), C9H11+ (119 m/z), and C7H9+ (93 m/z). The results reported in this manuscript enables to comprehend the relationship between the degree of incorporation of oxygen and the rate of deposition with the input RF power.
Resumo:
Plasma polymerisation is an effective tool for fabrication of thin films from volatile organic monomers. RF plasma assisted deposition is used for one-step, chemical-free polymerisation of nonsynthetic materials derived directly from agricultural produces. By varying the deposition parameters, especially the input RF power, the film properties can be tailored for a range of uses, including electronics or biomedical applications. The fabricated thin films are optically transparent with refractive index close to that of glass. Given the diversity of essential oils, this paper compares the chemical and physical properties of thin films fabricated from several commercially exploited essential oils and their components. It is interesting to note that some of the properties can be tailored for various applications even though the chemical structure of the derived polymer is very similar. The obtained material properties also show that the synthesised materials are suitable as encapsulating layers for biodegradable implantable metals.
Resumo:
Transfer from aluminum to copper metallization and decreasing feature size of integrated circuit devices generated a need for new diffusion barrier process. Copper metallization comprised entirely new process flow with new materials such as low-k insulators and etch stoppers, which made the diffusion barrier integration demanding. Atomic Layer Deposition technique was seen as one of the most promising techniques to deposit copper diffusion barrier for future devices. Atomic Layer Deposition technique was utilized to deposit titanium nitride, tungsten nitride, and tungsten nitride carbide diffusion barriers. Titanium nitride was deposited with a conventional process, and also with new in situ reduction process where titanium metal was used as a reducing agent. Tungsten nitride was deposited with a well-known process from tungsten hexafluoride and ammonia, but tungsten nitride carbide as a new material required a new process chemistry. In addition to material properties, the process integration for the copper metallization was studied making compatibility experiments on different surface materials. Based on these studies, titanium nitride and tungsten nitride processes were found to be incompatible with copper metal. However, tungsten nitride carbide film was compatible with copper and exhibited the most promising properties to be integrated for the copper metallization scheme. The process scale-up on 300 mm wafer comprised extensive film uniformity studies, which improved understanding of non-uniformity sources of the ALD growth and the process-specific requirements for the ALD reactor design. Based on these studies, it was discovered that the TiN process from titanium tetrachloride and ammonia required the reactor design of perpendicular flow for successful scale-up. The copper metallization scheme also includes process steps of the copper oxide reduction prior to the barrier deposition and the copper seed deposition prior to the copper metal deposition. Easy and simple copper oxide reduction process was developed, where the substrate was exposed gaseous reducing agent under vacuum and at elevated temperature. Because the reduction was observed efficient enough to reduce thick copper oxide film, the process was considered also as an alternative method to make the copper seed film via copper oxide reduction.
Resumo:
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller's distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the first method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening isplacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain finer details which are not available explicitly in the earlier works.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, the mechanics of tubular hydroforming under various types of loading conditions is investigated. The main objective is to contrast the effects of prescribing fluid pressure or volume flow rate, in conjunction with axial displacement, on the stress and strain histories experienced by the tube and the process of bulging. To this end, axisymmetric finite element simulations of free hydroforming (without external die contact) of aluminium alloy tubes are carried out. Hill’s normally anisotropic yield theory along with material properties determined in a previous experimental study [A. Kulkarni, P. Biswas, R. Narasimhan, A. Luo, T. Stoughton, R. Mishra, A.K. Sachdev, An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming, Int. J. Mech. Sci. 46 (2004) 1727–1746] are employed in the computations. It is found that while prescribed fluid pressure leads to highly non-proportional strain paths, specified fluid volume flow rate may result in almost proportional ones for the predominant portion of loading. The peak pressure increases with axial compression for the former, while the reverse trend applies under the latter. The implication of these results on failure by localized necking of the tube wall is addressed in a subsequent investigation.
Resumo:
The present, paper deals with the CAE-based study Of impact of jacketed projectiles on single- and multi-layered metal armour plates using LS-DYNA. The validation of finite element modelling procedure is mainly based on the mesh convergence study using both shell and solid elements for representing single-layered mild steel target plates. It, is shown that the proper choice of mesh density and the strain rate-dependent material properties are essential for all accurate prediction of projectile residual velocity. The modelling requirements are initially arrived at by correlating against test residual velocities for single-layered mild steel plates of different depths at impact velocities in the ran.-c of approximately 800-870 m/s. The efficacy of correlation is adjudged, in terms of a 'correlation index', defined in the paper: for which values close to unity are desirable. The experience gained for single-layered plates is next; used in simulating projectile impacts on multi-layered mild steel target plates and once again a high degree of correlation with experimental residual velocities is observed. The study is repeated for single- and multi-layered aluminium target plates with a similar level of success in test residual velocity prediction. TO the authors' best knowledge, the present comprehensive study shows in particular for the first time that, with a. proper modelling approach, LS-DYNA can be used with a great degree of confidence in designing perforation-resistant single and multi-layered metallic armour plates.
Resumo:
Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.
Resumo:
Differentiation of various types of soft tissues is of high importance in medical imaging, because changes in soft tissue structure are often associated with pathologies, such as cancer. However, the densities of different soft tissues may be very similar, making it difficult to distinguish them in absorption images. This is especially true when the consideration of patient dose limits the available signal-to-noise ratio. Refraction is more sensitive than absorption to changes in the density, and small angle x-ray scattering on the other hand contains information about the macromolecular structure of the tissues. Both of these can be used as potential sources of contrast when soft tissues are imaged, but little is known about the visibility of the signals in realistic imaging situations. In this work the visibility of small-angle scattering and refraction in the context of medical imaging has been studied using computational methods. The work focuses on the study of analyzer based imaging, where the information about the sample is recorded in the rocking curve of the analyzer crystal. Computational phantoms based on simple geometrical shapes with differing material properties are used. The objects have realistic dimensions and attenuation properties that could be encountered in real imaging situations. The scattering properties mimic various features of measured small-angle scattering curves. Ray-tracing methods are used to calculate the refraction and attenuation of the beam, and a scattering halo is accumulated, including the effect of multiple scattering. The changes in the shape of the rocking curve are analyzed with different methods, including diffraction enhanced imaging (DEI), extended DEI (E-DEI) and multiple image radiography (MIR). A wide angle DEI, called W-DEI, is introduced and its performance is compared with that of the established methods. The results indicate that the differences in scattered intensities from healthy and malignant breast tissues are distinguishable to some extent with reasonable dose. Especially the fraction of total scattering has large enough differences that it can serve as a useful source of contrast. The peaks related to the macromolecular structure come to angles that are rather large, and have intensities that are only a small fraction of the total scattered intensity. It is found that such peaks seem to have only limited usefulness in medical imaging. It is also found that W-DEI performs rather well when most of the intensity remains in the direct beam, indicating that dark field imaging methods may produce the best results when scattering is weak. Altogether, it is found that the analysis of scattered intensity is a viable option even in medical imaging where the patient dose is the limiting factor.
Resumo:
Nanotechnology applications are entering the market in increasing numbers, nanoparticles being among the main classes of materials used. Particles can be used, e.g., for catalysing chemical reactions, such as is done in car exhaust catalysts today. They can also modify the optical and electronic properties of materials or be used as building blocks for thin film coatings on a variety of surfaces. To develop materials for specific applications, an intricate control of the particle properties, structure, size and shape is required. All these depend on a multitude of factors from methods of synthesis and deposition to post-processing. This thesis addresses the control of nanoparticle structure by low-energy cluster beam deposition and post-synthesis ion irradiation. Cluster deposition in high vacuum offers a method for obtaining precisely controlled cluster-assembled materials with minimal contamination. Due to the clusters small size, however, the cluster-surface interaction may drastically change the cluster properties on deposition. In this thesis, the deposition process of metal and alloy clusters on metallic surfaces is modelled using molecular dynamics simulations, and the mechanisms influencing cluster structure are identified. Two mechanisms, mechanical melting upon deposition and thermally activated dislocation motion, are shown to determine whether a deposited cluster will align epitaxially with its support. The semiconductor industry has used ion irradiation as a tool to modify material properties for decades. Irradiation can be used for doping, patterning surfaces, and inducing chemical ordering in alloys, just to give a few examples. The irradiation response of nanoparticles has, however, remained an almost uncharted territory. Although irradiation effects in nanoparticles embedded inside solid matrices have been studied, almost no work has been done on supported particles. In this thesis, the response of supported nanoparticles is studied systematically for heavy and light ion irradiation. The processes leading to damage production are identified and models are developed for both types of irradiation. In recent experiments, helium irradiation has been shown to induce a phase transformation from multiply twinned to single-crystalline nanoparticles in bimetallic alloys, but the nature of the transition has remained unknown. The alloys for which the effect has been observed are CuAu and FePt. It is shown in this thesis that transient amorphization leads to the observed transition and that while CuAu and FePt do not amorphize upon irradiation in bulk or as thin films, they readily do so as nanoparticles. This is the first time such an effect is demonstrated with supported particles, not embedded in a matrix where mixing is always an issue. An understanding of the above physical processes is essential, if nanoparticles are to be used in applications in an optimal way. This thesis clarifies the mechanisms which control particle morphology, and paves way for the synthesis of nanostructured materials tailored for specific applications.