970 resultados para Marine toxins -- Analysis
Resumo:
The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C-1-utilizing Methanolobus and Methanococcoides and the H-2-utilizing Methanogenium. Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.
Resumo:
Substituted amphetamines such as p-chloroamphetamine and the abused drug methylenedioxymethamphetamine cause selective destruction of serotonin axons in rats, by unknown mechanisms. Since some serotonin neurones also express neuronal nitric oxide synthase, which has been implicated in neurotoxicity, the present study was undertaken to determine whether nitric oxide synthase expressing serotonin neurones are selectively vulnerable to methylenedioxymethamphetamine or p-chloroamphetamine. Using double-labeling immunocytochemistry and double in situ hybridization for nitric oxide synthase and the serotonin transporter, it was confirmed that about two thirds of serotonergic cell bodies in the dorsal raphe nucleus expressed nitric oxide synthase, however few if any serotonin transporter immunoreactive axons in striatum expressed nitric oxide synthase at detectable levels. Methylenedioxymethamphetamine (30 mg/kg) or p-chloroamphetamine (2 x 10 mg/kg) was administered to Sprague-Dawley rats, and 7 days after drug administration there were modest decreases in the levels of serotonin transporter protein in frontal cortex, and striatum using Western blotting, even though axonal loss could be clearly seen by immunostaining. p-Chloroamphetamine or methylenedioxymethamphetamine administration did not alter the level of nitric oxide synthase in striatum or frontal cortex, determined by Western blotting. Analysis of serotonin neuronal cell bodies 7 days after p-chloroamphetamine treatment, revealed a net down-regulation of serotonin transporter mRNA levels, and a profound change in expression of nitric oxide synthase, with 33% of serotonin transporter mRNA positive cells containing nitric oxide synthase mRNA, compared with 65% in control animals. Altogether these results support the hypothesis that serotonin neurones which express nitric oxide synthase are most vulnerable to substituted amphetamine toxicity, supporting the concept that the selective vulnerability of serotonin neurones has a molecular basis.
Resumo:
A numerical mesoscale model is used to make a high-resolution simulation of the marine boundary layer in the Persian Gulf, during conditions of offshore flow from Saudi Arabia. A marine internal boundary layer (MIBL) and a sea-breeze circulation (SBC) are found to co-exist. The sea breeze develops in the mid-afternoon, at which time its front is displaced several tens of kilometres offshore. Between the coast and the sea-breeze system, the MIBL that occurs is consistent with a picture described in the existing literature. However, the MIBL is perturbed by the SBC, the boundary layer deepening significantly seaward of the sea-breeze front. Our analysis suggests that this strong, localized deepening is not a direct consequence of frontal uplift, but rather that the immediate cause is the retardation of the prevailing, low-level offshore wind by the SBC. The simulated boundary-layer development can be accounted for by using a simple 1D Lagrangian model of growth driven by the surface heat flux. This model is obtained as a straightforward modification of an established MIBL analytic growth model.
Resumo:
Three strains of a previously undescribed Actinomyces-like bacterium were isolated from samples taken from two dead seals and a porpoise. Biochemical testing and PAGE analysis of whole-cell proteins indicated the strains were phenotypically similar to each other but different from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene sequencing studies showed the organisms from marine animals were genetically closely related and represent a hitherto unknown subline within the genus Actinomyces (sequence divergence values > 6% with recognized species). Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium from the seals and a porpoise should be classified as Actinomyces marimammalium sp. nov. The type strain is CCUG 41710T.
Resumo:
Nitrogen flows from European watersheds to coastal marine waters Executive summary Nature of the problem • Most regional watersheds in Europe constitute managed human territories importing large amounts of new reactive nitrogen. • As a consequence, groundwater, surface freshwater and coastal seawater are undergoing severe nitrogen contamination and/or eutrophication problems. Approaches • A comprehensive evaluation of net anthropogenic inputs of reactive nitrogen (NANI) through atmospheric deposition, crop N fixation,fertiliser use and import of food and feed has been carried out for all European watersheds. A database on N, P and Si fluxes delivered at the basin outlets has been assembled. • A number of modelling approaches based on either statistical regression analysis or mechanistic description of the processes involved in nitrogen transfer and transformations have been developed for relating N inputs to watersheds to outputs into coastal marine ecosystems. Key findings/state of knowledge • Throughout Europe, NANI represents 3700 kgN/km2/yr (range, 0–8400 depending on the watershed), i.e. five times the background rate of natural N2 fixation. • A mean of approximately 78% of NANI does not reach the basin outlet, but instead is stored (in soils, sediments or ground water) or eliminated to the atmosphere as reactive N forms or as N2. • N delivery to the European marine coastal zone totals 810 kgN/km2/yr (range, 200–4000 depending on the watershed), about four times the natural background. In areas of limited availability of silica, these inputs cause harmful algal blooms. Major uncertainties/challenges • The exact dimension of anthropogenic N inputs to watersheds is still imperfectly known and requires pursuing monitoring programmes and data integration at the international level. • The exact nature of ‘retention’ processes, which potentially represent a major management lever for reducing N contamination of water resources, is still poorly understood. • Coastal marine eutrophication depends to a large degree on local morphological and hydrographic conditions as well as on estuarine processes, which are also imperfectly known. Recommendations • Better control and management of the nitrogen cascade at the watershed scale is required to reduce N contamination of ground- and surface water, as well as coastal eutrophication. • In spite of the potential of these management measures, there is no choice at the European scale but to reduce the primary inputs of reactive nitrogen to watersheds, through changes in agriculture, human diet and other N flows related to human activity.
Resumo:
Data from various stations having different measurement record periods between 1988 and 2007 are analyzed to investigate the surface ozone concentration, long-term trends, and seasonal changes in and around Ireland. Time series statistical analysis is performed on the monthly mean data using seasonal and trend decomposition procedures and the Box-Jenkins approach (autoregressive integrated moving average). In general, ozone concentrations in the Irish region are found to have a negative trend at all sites except at the coastal sites of Mace Head and Valentia. Data from the most polluted Dublin city site have shown a very strong negative trend of −0.33 ppb/yr with a 95% confidence limit of 0.17 ppb/yr (i.e., −0.33 ± 0.17) for the period 2002−2007, and for the site near the city of Cork, the trend is found to be −0.20 ± 0.11 ppb/yr over the same period. The negative trend for other sites is more pronounced when the data span is considered from around the year 2000 to 2007. Rural sites of Wexford and Monaghan have also shown a very strong negative trend of −0.99 ± 0.13 and −0.58 ± 0.12, respectively, for the period 2000−2007. Mace Head, a site that is representative of ozone changes in the air advected from the Atlantic to Europe in the marine planetary boundary layer, has shown a positive trend of about +0.16 ± 0.04 ppb per annum over the entire period 1988−2007, but this positive trend has reduced during recent years (e.g., in the period 2001−2007). Cluster analysis for back trajectories are performed for the stations having a long record of data, Mace Head and Lough Navar. For Mace Head, the northern and western clean air sectors have shown a similar positive trend (+0.17 ± 0.02 ppb/yr for the northern sector and +0.18 ± 0.02 ppb/yr for the western sector) for the whole period, but partial analysis for the clean western sector at Mace Head shows different trends during different time periods with a decrease in the positive trend since 1988 indicating a deceleration in the ozone trend for Atlantic air masses entering Europe.
Resumo:
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
Resumo:
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere–surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1–2 km.
Resumo:
In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, tip to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (similar to 3200 amu). A further three molecules (similar to similar to 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The production of volatile organic compounds (VOC) by plants is well known. However, few scientific groups have studied VOC produced by green, brown and red algae. Headspace collection of volatiles and solid phase microextraction, as well as the traditional extraction by hydrodistillation combined with analytical chromatographic techniques (i.e., GC-MS), have significantly improved the investigation of VOC from plants and algae. The major volatile compounds found in seaweeds are hydrocarbons, terpenes, phenols, alcohols, aldehydes, ketones, esters, fatty acids and halogen or sulfur-containing compounds. This article presents an overview of VOC isolated from and identified in marine macro-algae. Focus is given to non-halogenated and non-sulfur volatile compounds, as well as strategies to analyze and identify algal VOC by GC-MS.
Resumo:
The enzyme nitrate reductase (NR) responsible for the conversion of nitrate to nitrite is considered to be the rate-limiting step in nitrogen assimilation. The economically important marine macroalga Gracilaria tenuistipitata presents a circadian oscillation in NR protein content and activity. In order to identify if the regulation of NR in G. tenuistipitata happens at transcriptional levels, the NR cDNA and gene were sequenced and the NR mRNA expression was studied. Analysis of the sequenced gene revealed absence of introns which is unusual for NR genes. The transcriptional profiling revealed a circadian rhythm for NR; furthermore, a rhythm was observed in constant light condition, suggesting a possible regulation by the biological clock at the mRNA levels for NR in G. tenuistipitata.
Resumo:
Dibromotyrosine-derived metabolites are of common occurrence within marine sponges belonging to the order Verongida. However, previous chemical analysis of crude extracts obtained from samples of the verongid sponge Aplysina fulva collected in Brazil did not provide any dibromotyrosine-derived compounds. In this investigation, five samples of A. fulva from five different locations along the Brazilian coastline and one sample from a temperate reef in the South Atlantic Bight (SAB) (Georgia, USA) were investigated for the presence of bromotyrosine-derived compounds. All six samples collected yielded dibromotyrosine-derived compounds, including a new derivative, named aplysinafulvin, which has been identified by. analysis of spectroscopic data. These results confirm previous assumptions that dibromotyrosine-derived metabolites can be considered as chemotaxonomic markers of verongid sponges. The isolation of aplysinafulvin provides additional support for a biogenetic pathway involving an arene oxide intermediate in the biosynthesis of Verongida metabolites. It cannot yet be established if the chemical variability observed among the six samples of A.fulva collected in Brazil and the SAB is the result of different environmental factors, distinct chemical extraction and isolation protocols, or a consequence of hidden genetic diversity within the postulated morphological plasticity of this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 x 10(-12) mmol), 10.0 mg (3.12 x 10(-2) mmol) and 15.0 mg (4.68 x 10(-2) mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days.
Resumo:
The biotransformation reactions of alpha-bromoacetophenone (1), p-bromo-alpha-bromoacetophenone (2), and p-nitro-alpha-bromoacetophenone (3) by whole cells of the marine fungus Aspergillus sydowii Ce19 have been investigated. Fungal cells that had been grown in artificial sea water medium containing a high concentration of chloride ions (1.20 M) catalysed the biotransformation of 1 to 2-bromo-1-phenylethanol 4 (56%), together with the alpha-chlorohydrin 7 (9%), 1-phenylethan-1,2-diol 9 (26%), acetophenone 10 (4%) and phenylethanol 11 (5%) identified by GC-MS analysis. In addition, it was observed that the enzymatic reaction was accompanied by the spontaneous debromination of 1 to yield alpha-chloroacetophenone 5 (9%) and alpha-hydroxyacetophenone 6 (18%) identified by GC-FID analysis. When 2 and 3 were employed as substrates, various biotransformation products were detected but the formation of halohydrins was not observed. It is concluded that marine fungus A. sydowii Ce19 presents potential for the biotransformations of bromoacetophenone derivatives.