936 resultados para Map algebra accessibility
Resumo:
Coptotermes Wasmann (Isoptera: Rhinotermitidae) is one of the most economically important subterranean termite genera and some species are successful invaders. However, despite its important pest status, the taxonomic validity of many named Coptotermes species remains unclear. In this study, we reviewed all named species within the genus and investigated evidence supporting the validity of each named species. Species were systematically scrutinized according to the region of their original description: Southeast Asia, India, China, Africa, the Neotropics, and Australia. We estimate that of the currently 69 named species described by accepted nomenclatural rules, only 21 taxa have solid evidence for validity, 44 names have uncertain status, and the remaining species names should be synonymized or were made unavailable. Species with high degrees of invasiveness may be known under additional junior synonyms due to independent parochial descriptions. Molecular data for a vast majority of species are scarce and significant effort is needed to complete the taxonomic and phylogenetic revision of the genus. Because of the wide distribution of Coptotermes, we advocate for an integrative taxonomic effort to establish the distribution of each putative species, provide specimens and corresponding molecular data, check original descriptions and type specimens (if available), and provide evidence for a more robust phylogenetic position of each species. This study embodies both consensus and contention of those studying Coptotermes and thus pinpoints the current uncertainty of many species. This project is intended to be a roadmap for identifying those Coptotermes species names that need to be more thoroughly investigated, as an incentive to complete a necessary revision process.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. The control system designed is referred to as Boarding Control System (BCS). The performance of this system is investigated for a specific wind-farm service vessel—The Wave Craft. On a SES, the pressurized air cushion supports the majority of the weight of the vessel. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. Results are given through simulation, model- and full-scale experimental testing.
Resumo:
We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level. (C) 2010 American Institute of Physics. [doi:10.1063/1.3398025]
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We study an abelian Chern-Simons theory on a five-dimensional manifold with boundary. We find it to be equivalent to a higher-derivative generalization of the abelian Wess-Zumino-Witten model on the boundary. It contains a U(1) current algebra with an operational extension.
Resumo:
Non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with hundreds of dimensions has been a challenge. In this paper, we present a probabilistic data association (PDA) based algorithm for decoding non-orthogonal STBCs with large dimensions. Our simulation results show that the proposed PDA-based algorithm achieves near SISO AWGN uncoded BER as well as near-capacity coded BER (within 5 dB of the theoretical capacity) for large non-orthogonal STBCs from CDA. We study the effect of spatial correlation on the BER, and show that the performance loss due to spatial correlation can be alleviated by providing more receive spatial dimensions. We report good BER performance when a training-based iterative decoding/channel estimation is used (instead of assuming perfect channel knowledge) in channels with large coherence times. A comparison of the performances of the PDA algorithm and the likelihood ascent search (LAS) algorithm (reported in our recent work) is also presented.
Resumo:
The recent spurt of research activities in Entity-Relationship Approach to databases calls for a close scrutiny of the semantics of the underlying Entity-Relationship models, data manipulation languages, data definition languages, etc. For reasons well known, it is very desirable and sometimes imperative to give formal description of the semantics. In this paper, we consider a specific ER model, the generalized Entity-Relationship model (without attributes on relationships) and give denotational semantics for the model as well as a simple ER algebra based on the model. Our formalism is based on the Vienna Development Method—the meta language (VDM). We also discuss the salient features of the given semantics in detail and suggest directions for further work.
Resumo:
It has been shown in an earlier paper that I-realizability of a unate function F of up to six variables corresponds to ' compactness ' of the plot of F on a Karnaugh map. Here, an algorithm has been presented to synthesize on a Karnaugh map a non-threahold function of up to Bix variables with the minimum number of threshold gates connected in cascade. Incompletely specified functions can also be treated. No resort to inequalities is made and no pre-processing (such as positivizing and ordering) of the given switching function is required.
Resumo:
Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.
Resumo:
The hot deformation characteristics of alpha-zirconium in the temperature range of 650 °C to 850 °C and in the strain-rate range of 10-3 to 102 s-1 are studied with the help of a power dissipation map developed on the basis of the Dynamic Materials Model.[7,8,9] The processing map describes the variation of the efficiency of power dissipation (η =2m/m + 1) calculated on the basis of the strain-rate sensitivity parameter (m), which partitions power dissipation between thermal and microstructural means. The processing map reveals a domain of dynamic recrystallization in the range of 730 °C to 850 °C and 10−2 to 1−1 with its peak efficiency of 40 pct at 800 °C and 0.1 s-1 which may be considered as optimum hot-working parameters. The characteristics of dynamic recrystallization are similar to those of static recrystallization regarding the sigmoidal variation of grain size (or hardness) with temperature, although the dynamic recrystallization temperature is much higher. When deformed at 650 °C and 10-3 s-1 texture-induced dynamic recovery occurred, while at strain rates higher than 1 s-1, alpha-zirconium exhibits microstructural instabilities in the form of localized shear bands which are to be avoided in processing.
Resumo:
The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750-1200-degrees-C and strain rate range 0.0003-100 s-1 using processing maps developed in the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m + 1)]. where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925-degrees-C and 1 s-1. The published results are in agreement with the prediction of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variation of hot ductility. The stress-strain curves exhibited a single peak in a single peak in the dynamic recrystallisation domain, whereas multiple peaks and 'drooping' stress-strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.
Resumo:
The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.
Resumo:
The compression test flow stress data of Al-4Mg alloy at different temperatures and strain rates are analysed using a dynamic materials model which considers the workpiece material as a dissipator of power causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and optimum processing conditions for the alloy are determined. The features of the map correlate well with the microstructure and mechanical properties.
Resumo:
The constitutive flow behaviour of OFHC copper under working conditions is studied using hot compression in the temperature range 650 to 900-degrees-C and strain rate range 0.001 to 100 s-1. The variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain rate sensitivity) with temperature and strain rate is represented in the form of a power dissipation map and interpreted on the basis of the Dynamic Materials Model. The map prominently exhibited a domain centered at 850-degrees-C and 100 s-1 with a peak efficiency of 35 %. On the basis of the correlation of variations of grain size, efficiency of power dissipation and hot workability with temperature, the domain is identified to represent dynamic recrystallization (DRX).