441 resultados para MULTIPLICATIVE NOISES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional approaches to receiver-driven layered multicast have advocated the benefits of cumulative layering, which can enable coarse-grained congestion control that complies with TCP-friendliness equations over large time scales. In this paper, we quantify the costs and benefits of using non-cumulative layering and present a new, scalable multicast congestion control scheme which provides a fine-grained approximation to the behavior of TCP additive increase/multiplicative decrease (AIMD). In contrast to the conventional wisdom, we demonstrate that fine-grained rate adjustment can be achieved with only modest increases in the number of layers and aggregate bandwidth consumption, while using only a small constant number of control messages to perform either additive increase or multiplicative decrease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model of peripheral auditory processing is described and used to separate features of coarticulated vowels and consonants. After preprocessing of speech via a filterbank, the model splits into two parallel channels, a sustained channel and a transient channel. The sustained channel is sensitive to relatively stable parts of the speech waveform, notably synchronous properties of the vocalic portion of the stimulus it extends the dynamic range of eighth nerve filters using coincidence deteectors that combine operations of raising to a power, rectification, delay, multiplication, time averaging, and preemphasis. The transient channel is sensitive to critical features at the onsets and offsets of speech segments. It is built up from fast excitatory neurons that are modulated by slow inhibitory interneurons. These units are combined over high frequency and low frequency ranges using operations of rectification, normalization, multiplicative gating, and opponent processing. Detectors sensitive to frication and to onset or offset of stop consonants and vowels are described. Model properties are characterized by mathematical analysis and computer simulations. Neural analogs of model cells in the cochlear nucleus and inferior colliculus are noted, as are psychophysical data about perception of CV syllables that may be explained by the sustained transient channel hypothesis. The proposed sustained and transient processing seems to be an auditory analog of the sustained and transient processing that is known to occur in vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pigeons and other animals soon learn to wait (pause) after food delivery on periodic-food schedules before resuming the food-rewarded response. Under most conditions the steady-state duration of the average waiting time, t, is a linear function of the typical interfood interval. We describe three experiments designed to explore the limits of this process. In all experiments, t was associated with one key color and the subsequent food delay, T, with another. In the first experiment, we compared the relation between t (waiting time) and T (food delay) under two conditions: when T was held constant, and when T was an inverse function of t. The pigeons could maximize the rate of food delivery under the first condition by setting t to a consistently short value; optimal behavior under the second condition required a linear relation with unit slope between t and T. Despite this difference in optimal policy, the pigeons in both cases showed the same linear relation, with slope less than one, between t and T. This result was confirmed in a second parametric experiment that added a third condition, in which T + t was held constant. Linear waiting appears to be an obligatory rule for pigeons. In a third experiment we arranged for a multiplicative relation between t and T (positive feedback), and produced either very short or very long waiting times as predicted by a quasi-dynamic model in which waiting time is strongly determined by the just-preceding food delay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex diseases will have multiple functional sites, and it will be invaluable to understand the cross-locus interaction in terms of linkage disequilibrium (LD) between those sites (epistasis) in addition to the haplotype-LD effects. We investigated the statistical properties of a class of matrix-based statistics to assess this epistasis. These statistical methods include two LD contrast tests (Zaykin et al., 2006) and partial least squares regression (Wang et al., 2008). To estimate Type 1 error rates and power, we simulated multiple two-variant disease models using the SIMLA software package. SIMLA allows for the joint action of up to two disease genes in the simulated data with all possible multiplicative interaction effects between them. Our goal was to detect an interaction between multiple disease-causing variants by means of their linkage disequilibrium (LD) patterns with other markers. We measured the effects of marginal disease effect size, haplotype LD, disease prevalence and minor allele frequency have on cross-locus interaction (epistasis). In the setting of strong allele effects and strong interaction, the correlation between the two disease genes was weak (r=0.2). In a complex system with multiple correlations (both marginal and interaction), it was difficult to determine the source of a significant result. Despite these complications, the partial least squares and modified LD contrast methods maintained adequate power to detect the epistatic effects; however, for many of the analyses we often could not separate interaction from a strong marginal effect. While we did not exhaust the entire parameter space of possible models, we do provide guidance on the effects that population parameters have on cross-locus interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time reversal of stochastic diffusion processes is revisited with emphasis on the physical meaning of the time-reversed drift and the noise prescription in the case of multiplicative noise. The local kinematics and mechanics of free diffusion are linked to the hydrodynamic description. These properties also provide an interpretation of the Pope-Ching formula for the steady-state probability density function along with a geometric interpretation of the fluctuation-dissipation relation. Finally, the statistics of the local entropy production rate of diffusion are discussed in the light of local diffusion properties, and a stochastic differential equation for entropy production is obtained using the Girsanov theorem for reversed diffusion. The results are illustrated for the Ornstein-Uhlenbeck process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image inpainting refers to restoring a damaged image with missing information. The total variation (TV) inpainting model is one such method that simultaneously fills in the regions with available information from their surroundings and eliminates noises. The method works well with small narrow inpainting domains. However there remains an urgent need to develop fast iterative solvers, as the underlying problem sizes are large. In addition one needs to tackle the imbalance of results between inpainting and denoising. When the inpainting regions are thick and large, the procedure of inpainting works quite slowly and usually requires a significant number of iterations and leads inevitably to oversmoothing in the outside of the inpainting domain. To overcome these difficulties, we propose a solution for TV inpainting method based on the nonlinear multi-grid algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of correlated additive and multiplicative Gaussian white noise oil the Gompertzian growth of tumours. Our results are obtained by Solving numerically the time-dependent Fokker-Planck equation (FPE) associated with the stochastic dynamics. In Our numerical approach we have adopted B-spline functions as a truncated basis to expand the approximated eigenfunctions. The eigenfunctions and eigenvalues obtained using this method are used to derive approximate solutions of the dynamics under Study. We perform simulations to analyze various aspects, of the probability distribution. of the tumour cell populations in the transient- and steady-state regimes. More precisely, we are concerned mainly with the behaviour of the relaxation time (tau) to the steady-state distribution as a function of (i) of the correlation strength (lambda) between the additive noise and the multiplicative noise and (ii) as a function of the multiplicative noise intensity (D) and additive noise intensity (alpha). It is observed that both the correlation strength and the intensities of additive and multiplicative noise, affect the relaxation time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Co-localisation is a widely used measurement in immunohistochemical analysis to determine if fluorescently labelled biological entities, such as cells, proteins or molecules share a same location. However the measurement of co-localisation is challenging due to the complex nature of such fluorescent images, especially when multiple focal planes are captured. The current state-of-art co-localisation measurements of 3-dimensional (3D) image stacks are biased by noise and cross-overs from non-consecutive planes.

Method: In this study, we have developed Co-localisation Intensity Coefficients (CICs) and Co-localisation Binary Coefficients (CBCs), which uses rich z-stack data from neighbouring focal planes to identify similarities between image intensities of two and potentially more fluorescently-labelled biological entities. This was developed using z-stack images from murine organotypic slice cultures from central nervous system tissue, and two sets of pseudo-data. A large amount of non-specific cross-over situations are excluded using this method. This proposed method is also proven to be robust in recognising co-localisations even when images are polluted with a range of noises.

Results: The proposed CBCs and CICs produce robust co-localisation measurements which are easy to interpret, resilient to noise and capable of removing a large amount of false positivity, such as non-specific cross-overs. Performance of this method of measurement is significantly more accurate than existing measurements, as determined statistically using pseudo datasets of known values. This method provides an important and reliable tool for fluorescent 3D neurobiological studies, and will benefit other biological studies which measure fluorescence co-localisation in 3D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local computation in join trees or acyclic hypertrees has been shown to be linked to a particular algebraic structure, called valuation algebra.There are many models of this algebraic structure ranging from probability theory to numerical analysis, relational databases and various classical and non-classical logics. It turns out that many interesting models of valuation algebras may be derived from semiring valued mappings. In this paper we study how valuation algebras are induced by semirings and how the structure of the valuation algebra is related to the algebraic structure of the semiring. In particular, c-semirings with idempotent multiplication induce idempotent valuation algebras and therefore permit particularly efficient architectures for local computation. Also important are semirings whose multiplicative semigroup is embedded in a union of groups. They induce valuation algebras with a partially defined division. For these valuation algebras, the well-known architectures for Bayesian networks apply. We also extend the general computational framework to allow derivation of bounds and approximations, for when exact computation is not feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate a simple and novel illumination model that can be used for illumination invariant facial recognition. This model requires no prior knowledge of the illumination conditions and can be used when there is only a single training image per-person. The proposed illumination model separates the effects of illumination over a small area of the face into two components; an additive component modelling the mean illumination and a multiplicative component, modelling the variance within the facial area. Illumination invariant facial recognition is performed in a piecewise manner, by splitting the face image into blocks, then normalizing the illumination within each block based on the new lighting model. The assumptions underlying this novel lighting model have been verified on the YaleB face database. We show that magnitude 2D Fourier features can be used as robust facial descriptors within the new lighting model. Using only a single training image per-person, our new method achieves high (in most cases 100%) identification accuracy on the YaleB, extended YaleB and CMU-PIE face databases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental Psychology has typically considered noise as pollution and focused upon its negative impact. However, recent research in psychology and anthropology indicates the experience of noise as aversive depends upon the meanings with which it is attributed. Moreover, such meanings seem to be dependent on the social context. Here we extend this research through studying the aural experience of a religious festival in North India which is characterised by loud, continuous and cacophonous noise. Reporting an experiment and semi-structured interviews, we show that loud noise is experienced as pleasant or unpleasant according to the meanings attributed to it. Specifically, the experiment shows the same noise is experienced more positively (and listened to longer) when attributed to the festival rather than to a non-festival source. In turn, the qualitative data show that within the Mela, noises judged as having a religious quality are reported as more positive than noises that are not. Moreover, the qualitative data suggest a key factor in the evaluation of noise is our participants’ social identities as pilgrims. This identity provides a framework for interpreting the auditory environment and noises judged as intruding into their religious experience were judged negatively, whereas noises judged as contributing to their religious experience were judged more positively. Our findings therefore point to the ways in which our social identities are implicated in the process of attributing meaning to the auditory environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Before a natural sound can be recognized, an auditory signature of its source must be learned through experience. Here we used random waveforms to probe the formation of new memories for arbitrary complex sounds. A behavioral measure was designed, based on the detection of repetitions embedded in noises up to 4 s long. Unbeknownst to listeners, some noise samples reoccurred randomly throughout an experimental block. Results showed that repeated exposure induced learning for otherwise totally unpredictable and meaningless sounds. The learning was unsupervised and resilient to interference from other task-relevant noises. When memories were formed, they emerged rapidly, performance became abruptly near-perfect, and multiple noises were remembered for several weeks. The acoustic transformations to which recall was tolerant suggest that the learned features were local in time. We propose that rapid sensory plasticity could explain how the auditory brain creates useful memories from the ever-changing, but sometimes repeating, acoustical world. © 2010 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:



We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that the following process continues for up to n rounds where n is the total number of nodes initially in the network: the adversary deletesan arbitrary node from the network, then the network responds by quickly adding a small number of new edges.

We present a distributed data structure that ensures two key properties. First, the diameter of the network is never more than O(log Delta) times its original diameter, where Delta is the maximum degree of the network initially. We note that for many peer-to-peer systems, Delta is polylogarithmic, so the diameter increase would be a O(loglog n) multiplicative factor. Second, the degree of any node never increases by more than 3 over its original degree. Our data structure is fully distributed, has O(1) latency per round and requires each node to send and receive O(1) messages per round. The data structure requires an initial setup phase that has latency equal to the diameter of the original network, and requires, with high probability, each node v to send O(log n) messages along every edge incident to v. Our approach is orthogonal and complementary to traditional topology-based approaches to defending against attack.