986 resultados para Low pass filters.
Resumo:
In this paper we present an adaptive spatio-temporal filter that aims to improve low-cost depth camera accuracy and stability over time. The proposed system is composed by three blocks that are used to build a reliable depth map of static scenes. An adaptive joint-bilateral filter is used to obtain consistent depth maps by jointly considering depth and video information and by adapting its parameters to different levels of estimated noise. Kalman filters are used to reduce the temporal random fluctuations of the measurements. Finally an interpolation algorithm is used to obtain consistent depth maps in the regions where the depth information is not available. Results show that this approach allows to considerably improve the depth maps quality by considering spatio-temporal information and by adapting its parameters to different levels of noise.
Resumo:
O presente trabalho está fundamentado no desenvolvimento de uma metodologia e/ou uma tecnologia de obtenção e caracterização de filtros ópticos de interferência de banda passante variável [C.M. da Silva, 2010] e de banda de corte variáveis, constituídos por refletores dielétricos multicamadas de filmes finos intercalados por cavidades de Fabry-Perot não planares com espessuras linearmente variáveis, que apresentam a propriedade do deslocamento linear da transmitância máxima espectral em função da posição, isto é, um Filtro de Interferência Variável (FIV). Este método apresenta novas e abrangentes possibilidades de confecção de filtros ópticos de interferência variável: lineares ou em outras formas desejadas, de comprimento de onda de corte variável (passa baixa ou alta) e filtros de densidade neutra variável, através da deposição de metais, além de aplicações em uma promissora e nova área de pesquisa na deposição de filmes finos não uniformes. A etapa inicial deste desenvolvimento foi o estudo da teoria dos filtros ópticos dielétricos de interferência para projetar e construir um filtro óptico banda passante convencional de um comprimento de onda central com camadas homogêneas. A etapa seguinte, com base na teoria óptica dos filmes finos já estabelecida, foi desenvolver a extensão destes conhecimentos para determinar que a variação da espessura em um perfil inclinado e linear da cavidade entre os refletores de Bragg é o principal parâmetro para produzir o deslocamento espacial da transmitância espectral, possibilitando o uso de técnicas especiais para se obter uma variação em faixas de bandas de grande amplitude, em um único filtro. Um trabalho de modelagem analítica e análise de tolerância de espessuras dos filmes depositados foram necessários para a seleção da estratégia do \"mascaramento\" seletivo do material evaporado formado na câmara e-Beam (elétron-Beam) com o objetivo da obtenção do filtro espectral linear variável de características desejadas. Para tanto, de acordo com os requisitos de projeto, foram necessárias adaptações em uma evaporadora por e-Beam para receber um obliterador mecânico especialmente projetado para compatibilizar os parâmetros das técnicas convencionais de deposição com o objetivo de se obter um perfil inclinado, perfil este previsto em processos de simulação para ajustar e calibrar a geometria do obliterador e se obter um filme depositado na espessura, conformação e disposição pretendidos. Ao final destas etapas de modelagem analítica, simulação e refinamento recorrente, foram determinados os parâmetros de projeto para obtenção de um determinado FIV (Filtro de Interferência Variável) especificado. Baseadas nos FIVs muitas aplicações são emergentes: dispositivos multi, hiper e ultra espectral para sensoriamento remoto e análise ambiental, sistemas Lab-on-Chip, biossensores, detectores chip-sized, espectrofotometria de fluorescência on-chip, detectores de deslocamento de comprimento de onda, sistemas de interrogação, sistemas de imageamento espectral, microespectrofotômetros e etc. No escopo deste trabalho se pretende abranger um estudo de uma referência básica do emprego do (FIV) filtro de interferência variável como detector de varredura de comprimento de ondas em sensores biológicos e químicos compatível com pós processamento CMOS. Um sistema básico que é constituído por um FIV montado sobre uma matriz de sensores ópticos conectada a um módulo eletrônico dedicado a medir a intensidade da radiação incidente e as bandas de absorção das moléculas presentes em uma câmara de detecção de um sistema próprio de canais de microfluidos, configurando-se em um sistema de aquisição e armazenamento de dados (DAS), é proposto para demonstrar as possibilidades do FIV e para servir de base para estudos exploratórios das suas diversas potencialidades que, entre tantas, algumas são mencionadas ao longo deste trabalho. O protótipo obtido é capaz de analisar fluidos químicos ou biológicos e pode ser confrontado com os resultados obtidos por equipamentos homologados de uso corrente.
Resumo:
A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (> 80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5)cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR, Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of deposition conditions on characteristic mechanical properties - elastic modulus and hardness - of low-temperature PECVD silicon nitrides is investigated using nanoindentation. lt is found that increase in substrate temperature, increase in plasma power and decrease in chamber gas pressure all result in increases in elastic modulus and hardness. Strong correlations between the mechanical properties and film density are demonstrated. The silicon nitride density in turn is shown to be related to the chemical composition of the films, particularly the silicon/nitrogen ratio. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Most published work on either low- or high-rate biological filters covers one of three topics: kinetics, microbiology/ecology or hydraulics. These areas have been re-examined together for high-rate filters in order to further integrate them and enable appropriate utilization of low-rate filter experience.
Resumo:
This thesis describes an industrial research project carried out in collaboration with STC Components, Harlow, Essex. Technical and market trends in the use of surface acoustic wave (SAW) devices are reviewed. As a result, three areas not previously addressed by STC were identified: lower insertion loss designs, higher operating frequencies and improved temperature dependent stability. A review of the temperature performance of alternative lower insertion loss designs,shows that greater use could be made of the on-site quartz growing plant. Data is presented for quartz cuts in the ST-AT range. This data is used to modify the temperature performance of a SAW filter. Several recently identified quartz orientations have been tested. These are SST, LST and X33. Problems associated with each cut are described and devices demonstrated. LST quartz, although sensitive to accuracy of cut, is shown to have an improved temperature coefficient over the normal ST orientation. Results show that its use is restricted due to insertion loss variations with temperature. Effects associated with split-finger transducers on LST-quartz are described. Two low-loss options are studied, coupled resonator filters for very narrow bandwidth applications and single phase unidirectional transducers (SPUDT) for fractional bandwidths up to about 1%. Both designs can be implemented with one quarter wavelength transducer geometries at operating frequencies up to 1GHz. The SPUDT design utilised an existing impulse response model to provide analysis of ladder or rung transducers. A coupled resonator filter at 400MHz is demonstrated with a matched insertion loss of less than 3.5dB and bandwidth of 0.05%. A SPUDT device is designed as a re-timing filter for timing extraction in a long haul PCM transmission system. Filters operating at 565MHz are demonstrated with insertion losses of less than 6dB. This basic SPUDT design is extended to a maximally distributed version and demonstrated at 450MHz with 9.8dB insertion loss.
Resumo:
The suitability of a new plastic supporting medium for biofiltration was tested over a three year period. Tests were carried out on the stability, surface properties, mechanical strength, and dimensions of the medium. There was no evidence to suggest that the medium was deficient in any of these respects. The specific surface (320m2m-3) and the voidage (94%) of the new medium are unlike any other used in bio-filtration and a pilot plant containing two filters was built to observe its effects on ecology and performance. Performance was estimated by chemical analysis and ecology studied by film examination and fauna counts. A system of removable sampling baskets was designed to enable samples to be obtained from two intermediate depths of filter. One of the major operating problems of percolating filters is excessive accumulation of film. The amount of film is influenced by hydraulic and organic load and each filter was run at a different loading. One was operated at 1.2m3m-3day-1 (DOD load 0.24kgm-3day-1) judged at the time to be the lowest filtration rate to offer advantages over conventional media. The other filter was operated at more than twice this loading (2.4m3m-3day-lBOD load 0.55kgm-3day-1) giving a roughly 2.5x and 6x the conventional loadings recommended for a Royal Commission effluent. The amount of film in each filter was normally low (0.05-3kgm(3 as volatile solids) and did not affect efficiency. The evidence collected during the study indicated that the ecology of the filters was normal when compared with the data obtained from the literature relating to filters with mineral media. There were indications that full ecological stability was yet to be reached and this was affecting the efficiency of the filters. The lower rate filter produced an average 87% BOD removal giving a consistent Royal Commission effluent during the summer months. The higher rate filter produced a mean 83% BOD removal but at no stage a consistent Royal Commission effluent. From the data on ecology and performance the filters resembled conventional filters rather than high rate filters.
Resumo:
Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characteristics of suppression (eg, gain control), not excitation, or merely the isotropic subunits of the oriented detecting mechanisms. To shed light on this, we used all three paradigms to focus on the ‘high-speed’ corner of spatio-temporal vision (low spatial frequency, high temporal frequency), where cross-oriented achromatic effects are greatest. We used flickering Gabor patches as targets and a 2IFC procedure for monocular, binocular, and dichoptic stimulus presentations. To account for our results, we devised a simple model involving an isotropic monocular filter-stage feeding orientation-tuned binocular filters. Both filter stages are adaptable, and their outputs are available to the decision stage following nonlinear contrast transduction. However, the monocular isotropic filters (i) adapt only to high-speed stimuli—consistent with a magnocellular subcortical substrate—and (ii) benefit decision making only for high-speed stimuli (ie, isotropic monocular outputs are available only for high-speed stimuli). According to this model, the visual processes revealed by masking, adaptation, and summation are related but not identical.
Resumo:
Background Yellow filters are sometimes recommended to people with low vision. Our aim was investigate the effects of three commercial yellow filters on visual acuity and contrast sensitivity (with and without glare) and reading (without glare) under conditions of forward light scatter (FLS). Method Fifty-five healthy subjects were assessed with Corning Photochromic Filters (CPFs) 450, 511 and 527 and a filter producing FLS. The effects on log MAR visual acuity, Pelli–Robson contrast sensitivity with and without glare, and reading (measured with MNRead charts) without glare were determined. Results Statistically significant differences were found between the overall effect of glare and between CPFs for visual acuity and contrast sensitivity. A gradual decline in visual acuity, contrast sensitivity and reading with increasing CPF absorption was noted. Conclusion Effects of CPF450, 511, 527 on visual acuity, contrast sensitivity and reading under conditions of FLS were negative but not clinically significant.
Resumo:
The issues involved in employing nonlinear optical loop mirrors (NOLMs) as intensity filters in picosecond soliton transmission were examined in detail. It was shown that inserting NOLMs into a periodically amplified transmission line allowed picosecond solitons to be transmitted under conditions considered infeasible until now. The loop mirrors gave dual function, removing low-power background dispersive waves through saturable absorption and applying a negative feedback mechanism to control the amplitude of the solitons. The stochastic characteristics of the pulses that were due to amplifier spontaneous-emission noise were investigated, and a number of new properties were determined. In addition, the mutual interaction between pulses was also significantly different from that observed for longer-duration solitons. The impact of Raman scattering in the computations was included and it was shown that soliton self-frequency shifts may be eliminated by appropriate bandwidth restrictions.
Resumo:
We have developed the analytic expressions for the phase response and time delay of FBGSL of arbitrary grating structure and found that the results from the modelling are in excellent agreement with that of the experimentally measured real devices. The theoretical and experimental investigation clearly reveals that FBGSLs utilizing uniform and linearly chirped gratings exhibit a near-constant time delay in the passbands. Such multi-channel bandpass filters should be highly attractive to WDM applications as they are operating in transmission regime and offering near-zero dispersion.
Resumo:
With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^
Resumo:
In 1979 the United Nations passed the Convention on the Elimination of All Forms of Discrimination against Women (CEDAW), an international bill of rights for women. Much scholarship has focused on the degree to which states have adopted these new international gender norms, but have paid little attention to the fact that norms change in the processes of implementation. This dissertation focuses on that process assessing the translation of international gender equality norm in Lebanon.^ The study traces global gender equality norms as they are translated into a complex context characterized by a political structure that divides powers according to confessional groups, a social structure that empowers men as heads of families, and a geopolitical structure that opposes a secular West to the Muslim East. Through a comparison of three campaigns – the campaign to combat violence against women, the campaign to change personal status codes, and the campaign to give women equal rights to pass on their nationality – the study traces different ways in which norms are translated as activists negotiate the structures that make up the Lebanese context. Through ethnographic research, the process of norm translation was found to produce various filters, i.e., constellations of arguments put forward by activists as they seek to match international norms to the local context. The dissertation identifies six such filters and finds that these filters often have created faithless translations of international norms.^
Resumo:
PURPOSE: The objective of this study was to evaluate, by halometry and under low illumination conditions, the effects of short-wavelength light absorbance filters on visual discrimination capacity in retinitis pigmentosa patients. METHODS: This was an observational, prospective, analytic, and transversal study on 109 eyes of 57 retinitis pigmentosa patients with visual acuity better than 1.25 logMAR. Visual disturbance index (VDI) was determined using the software Halo 1.0, with and without the interposition of filters which absorb (totally or partially) short-wavelength light between 380 and 500 nm. RESULTS: A statistically significant reduction in the VDI values determined using filters which absorb short-wavelength light was observed (p < 0.0001). The established VDIs in patients with VA logMAR <0.4 were 0.30 ± 0.05 (95% CI, 0.26–0.36) for the lens alone, 0.20 ± 0.04 (95% CI, 0.16–0.24) with the filter that completely absorbs wavelengths shorter than 450 nm, and 0.24 ± 0.04 (95% CI, 0.20–0.28) with the filter that partially absorbs wavelengths shorter than 450 nm, which implies a 20 to 33% visual discrimination capacity increase. In addition, a decrease of VDI in at least one eye was observed in more than 90% of patients when using a filter. CONCLUSIONS: Short-wavelength light absorbance filters increase visual discrimination capacity under low illumination conditions in retinitis pigmentosa patients. Use of such filters constitutes a suitable method to improve visual quality related to intraocular light visual disturbances under low illumination conditions in this group of patients. © 2016 American Academy of Optometry