866 resultados para Likelihood Functions
Resumo:
Neuroimaging, functional image analysis, spatial model, cortical surface, spatially variable convolution
Resumo:
Vectorial Boolean function, almost bent, almost perfect nonlinear, affine equivalence, CCZ-equivalence
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2007
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016
Resumo:
En l’anàlisi de la supervivència el problema de les dades censurades en un interval es tracta, usualment,via l’estimació per màxima versemblança. Amb l’objectiu d’utilitzar una expressió simplificada de la funció de versemblança, els mètodes estàndards suposen que les condicions que produeixen la censura no afecten el temps de fallada. En aquest article formalitzem les condicions que asseguren la validesa d’aquesta versemblança simplificada. Així, precisem diferents condicions de censura no informativa i definim una condició de suma constant anàloga a la derivada en el context de censura per la dreta. També demostrem que les inferències obtingudes amb la versemblançaa simplificada són correctes quan aquestes condicions són certes. Finalment, tractem la identificabilitat de la funció distribució del temps de fallada a partir de la informació observada i estudiem la possibilitat de contrastar el compliment de la condició de suma constant.
Resumo:
L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense as well as of a new type is studied for such aggregator functions in production and consumer theory. In particular representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.