1000 resultados para Library circulation
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background Early atherosclerosis involves the endothelium of many arteries. Information about peripheral arterial anatomy and function derived from vascular imaging studies such as brachial artery reactivity (BAR) and carotid intima media thickness (IMT) may be pertinent to the coronary circulation. The prevention and early treatment of atherosclerosis is gaining more attention, and these tests might be used as indications or perhaps guides to the effectiveness of therapy, but their application in clinical practice has been limited. This review seeks to define the anatomy and pathophysiology underlying these investigations, their methodology, the significance of their Findings, and the issues that must be resolved before their application. Methods The literature on BAR and IMT is extensively reviewed, especially in relation to clinical use. Results Abnormal flow-mediated dilation is present in atherosclerotic vessels, is associated with cardiovascular risk factors, and may be a marker of preclinical disease. Treatment of known atherosclerotic risk Factors has been shown to improve flow-mediated dilation, and some data suggest that vascular responsiveness is related to outcome. Carotid IMT is associated with cardiovascular risk factors, and increased levels can predict myocardial infarction and stroke. Aggressive risk factor management can decrease IMT. Conclusions BAR and IMT ate functional and structural markers of the atherosclerotic process. The clinical use of BAR has been limited by varying reproducibility and the influence by exogenous factors, but IMT exhibits less variability. A desirable next step in the development of BAR and IMT as useful clinical tools would be to show an association of improvement in response to treatment with improvement in prognosis.
Resumo:
The aim of this experiment was to establish a mouse model of irradiation-induced oral candidiasis and to explore the cellular populations and mechanisms by which the infection is cleared from the oral mucosa. BALB/c mice received irradiation to the head and neck equivalent to 800 Rad using a Cobalt 60 gamma source. Both irradiated and non-irradiated mice were infected orally with 1 X 10(8) Candida albicans yeasts. Compared with untreated controls, irradiated animals developed a more severe infection of longer duration, with hyphae penetrating the oral mucosa. Monoclonal antibody depletion of CD4(+) but not CD8(+) T cells from the systemic circulation prolonged the infection in irradiated mice, but not in controls. Supernatants of submandibular and superficial cervical lymph node cultures from irradiated animals demonstrated significantly higher titers of interleukin-12, but similar levels of interferon-gamma compared with controls. Screening for cytokine production by an RNase protection assay detected only macrophage migration inhibition factor in irradiated and non-irradiated oral tissues from day 8 onwards. The results of this study demonstrate a requirement for CD4(+) T cells in the recovery from oral candidiasis induced by head and neck irradiation in mice, and are consistent with a role for Th-1-type cytokines in host resistance.
Resumo:
We constructed a BAC library of the model legume Lotus japonicus with a 6-to 7-fold genome coverage. We used vector PCLD04541, which allows direct plant transformation by BACs. The average insert size is 94 kb. Clones were stable in Escherichia coli and Agrobacterium tumefaciens.
Resumo:
Utilizing an in vitro laminitis explant model, we have investigated how bacterial broth cultures and purified bacterial proteases activate matrix metalloproteinases (MMPs) and alter structural integrity of cultured equine lamellar hoof explants. Four Gram-positive Streptococcus spp. and three Gram-negative bacteria all induced a dose-dependent activation of MMP-2 and MMP-9 and caused lamellar explants to separate. MMP activation was deemed to have occurred if a specific MMP inhibitor, batimastat, blocked MMP activity and prevented lamellar separation. Thermolysin and streptococcal pyrogenic exotoxin B (SpeB) both separated explants dose-dependently but only thermolysin was inhibitable by batimastat or induced MMP activation equivalent to that seen with bacterial broths. Additionally, thermolysin and broth MMP activation appeared to be cell dependent as MMP activation did not occur in isolation. These results suggest the rapid increase in streptococcal species in the caecum and colon observed in parallel with carbohydrate induced equine laminitis may directly cause laminitis via production of exotoxin(s) capable of activating resident MMPs within the lamellar structure. Once activated, these MMPs can degrade key components of the basement membrane (BM) hemidesmosome complex, ultimately separating the BM from the epidermal basal cells resulting in the characteristic laminitis histopathology of hoof lamellae. While many different causative agents have been evaluated in the past, the results of this study provide a unifying aetiological mechanism for the development of carbohydrate induced equine laminitis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections.
Resumo:
BACKGROUND: Because subcutaneous and splanchnic oxygenation indices are sensitive indicators of evolving hemorrhagic shock and adequacy of resuscitation, we postulated that these indices might have an equivalent role in the monitoring of severely burned patients. This observational study was undertaken to examine changes in tissue oxygenation indices during burn resuscitation. METHODS: Seven patients with major burns (54 +/- 21% total body surface area) were studied during the first 36 hours of fluid resuscitation. Silastic tubing was placed in the subcutaneous tissue just beneath both normal skin and deep partial thickness burn. Fiberoptic sensors inserted into the tubing measured subcutaneous oxygen and carbon dioxide tensions in the burnt skin (PO2scb and PCO2scb) and normal skin (PO2scn and PCO2scn) continuously. Gastric intramucosal pH (pHi) and the mucosal CO2 (PCO2m) gap were calculated using gastric tonometers. Mean arterial pressure, arterial pH, lactate, and pHi measurements were obtained for 36 hours. RESULTS: There were no significant differences in mean arterial pressure, arterial pH, or lactate concentrations throughout the study period, whereas indices of tissue oxygenation showed deterioration: pHi decreased from 7.2 +/- 0.1 to 6.7 +/- 0.3 (p = 0.06), the PCO2m gap increased from 12 +/- 17 to 108 +/- 123 mm Hg (p < 0.01), PO2scn decreased from 112 +/- 18 to 50 +/- 11 mm Hg (p < 0.01), PO2scb decreased from 62 +/- 23 to 29 +/- 16 mm Hg (p < 0.01), PCO2scn increased from 42 +/- 4 to 46 +/- 10 mm Hg (p = 0.2), and PCO2scb increased from 42 +/- 10 to 52 +/- 5 mm Hg (p = 0.05). CONCLUSION: Despite adequate global indices of tissue perfusion after 36 hours of resuscitation, tissue monitoring indicated significant deterioration in the splanchnic circulation and in the normal and burnt skin.
Resumo:
The placenta must allow the passage of iodide from the maternal to the fetal circulation for synthesis of thyroxine by the fetal thyroid. The thyroid sodium iodide symporter (NIS) was cloned in 1996 and, although widely distributed among epithelial tissues, early studies failed to detect it in placenta. We demonstrated NIS mRNA in human placenta and in the human choriocarcinoma cell line, JAr. NIS protein was localized to trophoblasts, with a tendency to apical distribution, in sections of human placenta immunostained with a monoclonal antibody against hNIS. We conclude that NIS is expressed in placenta and may mediate placental iodide transport. (C) 2001 Harcourt Publishers Ltd.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
This paper presents the results of my action research. I was involved in establishing and running a digital library that was founded by the government of South Korea. The process involved understanding the relationship between the national IT infrastructure and the success factors of the digital library. In building, the national IT infrastructure, a digital library system was implemented; it combines all existing digitized university libraries and can provide overseas information, such as foreign journal articles, instantly and freely to every Korean researcher. An empirical survey was made as a part of the action research; the survey determined user satisfaction in the newly established national digital library. After obtaining the survey results, I suggested that the current way of running the nationwide government-owned digital library should be retained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Essential hypertension is a common disorder, associated with increased endothelin-l-mediated vasoconstrictor tone at rest. We hypothesized that increased vasoconstrictor activity of endothelin-1 might explain why the normal decrease in peripheral vascular resistance in response to exercise is attenuated in hypertensive patients. Therefore, we investigated the effect of endothelin A (ETA) receptor blockade on the vasodilator response to handgrip exercise. Forearm blood flow responses to handgrip exercise (15%, 30%, and 45% of maximum voluntary contraction) were assessed in hypertensive patients and matched normotensive subjects, before and after intra-arterial infusions of the ETA receptor antagonist BQ-123; a control dilator, hydralazine; and placebo (saline). Preinfusion (baseline) vasodilation in response to exercise was significantly attenuated at each workload in hypertensive patients compared with normotensive subjects. Intra-arterial infusions of hydralazine and saline did not increase the vasodilator response to exercise in either hypertensives or normotensives at any workload. The vasodilator response to exercise was markedly enhanced after BQ-123 at the 2 higher workloads in hypertensives (157 +/- 48%, P < 0.01; 203 &PLUSMN; 58%, P < 0.01) but not in normotensives. This suggests that the impaired vasodilator response to exercise in hypertensive patients is, at least in part, a functional limitation caused by endogenous ETA receptor-mediated vasoconstriction. Treatment with endothelin receptor antagonists may, therefore, increase exercise capacity in essential hypertension.
Resumo:
Local scale windfield and air mass characteristics during the onset of two foehn wind events in an alpine hydro-catchment are presented. Grounding of the topographically modified foehn was found to be dependent on daytime surface heating and topographic channelling of flow. The foehn front was observed to advance down-valley until the valley widened significantly. The foehn wind appeared to decouple from the surface downstream of the accelerated flow associated with the valley constriction. and to be lifted above local thermally generated circulations including a lake breeze. Towards evening. the foehn front retreated up valley in response to reduced surface heating and the intrusion into the study area of a deep and cool air mass associated with a regional scale mountain-plain circulation. Differences in the local windfield observed during both case study events reflect the importance of different thermal and dynamic forcings on airflow in complex terrain. These are the result of variation in surface energy exchanges, channelling and blocking of airflow. Observations presented here have both theoretical and applied implications with regard to forecasting foehn onset, wind hazard management, recreational activities and air quality management in alpine settings.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.