845 resultados para Learning Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabajo de investigación que realiza un estudio clasificatorio de las asignaturas matriculadas en la carrera de Administración y Dirección de Empresas de la UOC en relación a su resultado. Se proponen diferentes métodos y modelos de comprensión del entorno en el que se realiza el estudio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been convincingly argued that computer simulation modeling differs from traditional science. If we understand simulation modeling as a new way of doing science, the manner in which scientists learn about the world through models must also be considered differently. This article examines how researchers learn about environmental processes through computer simulation modeling. Suggesting a conceptual framework anchored in a performative philosophical approach, we examine two modeling projects undertaken by research teams in England, both aiming to inform flood risk management. One of the modeling teams operated in the research wing of a consultancy firm, the other were university scientists taking part in an interdisciplinary project experimenting with public engagement. We found that in the first context the use of standardized software was critical to the process of improvisation, the obstacles emerging in the process concerned data and were resolved through exploiting affordances for generating, organizing, and combining scientific information in new ways. In the second context, an environmental competency group, obstacles were related to the computer program and affordances emerged in the combination of experience-based knowledge with the scientists' skill enabling a reconfiguration of the mathematical structure of the model, allowing the group to learn about local flooding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Purpose: Several well-known managerial accounting performance measurement models rely on causal assumptions. Whilst users of the models express satisfaction and link them with improved organizational performance, academic research, of the realworld applications, shows few reliable statistical associations. This paper provides a discussion on the"problematic" of causality in a performance measurement setting. Design/methodology/approach: This is a conceptual study based on an analysis and synthesis of the literature from managerial accounting, organizational theory, strategic management and social scientific causal modelling. Findings: The analysis indicates that dynamic, complex and uncertain environments may challenge any reliance upon valid causal models. Due to cognitive limitations and judgmental biases, managers may fail to trace correct cause-and-effect understanding of the value creation in their organizations. However, even lacking this validity, causal models can support strategic learning and perform as organizational guides if they are able to mobilize managerial action. Research limitations/implications: Future research should highlight the characteristics necessary for elaboration of convincing and appealing causal models and the social process of their construction. Practical implications: Managers of organizations using causal models should be clear on the purposes of their particular models and their limitations. In particular, difficulties are observed in specifying detailed cause and effect relations and their potential for communicating and directing attention. They should therefore construct their models to suit the particular purpose envisaged. Originality/value: This paper provides an interdisciplinary and holistic view on the issue of causality in managerial accounting models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines both the motives for and the benefits of attending a uni- versity programme for older people (UPOP) in Spain, and how they vary with the type of UPOP. Two UPOP models were assessed: The"Older People"s Classes" of the University of Barcelona, which is organised as a lecture course, and the"University of Experience" at the University of Valencia, which is a three- or four- year variant of regular university degrees. A sample of 321 older students (mean age 67.5 years) was gathered from the two UPOPs, 161 participants from the former and 157 from the latter. The findings suggest that expressive motives such as acquiring knowledge, expanding the mind or learning for the joy of learning were the most important reasons for joining a UPOP, and that among the perceived benefits from taking classes at university featured"gaining more friends","enhanced self or life-satisfaction" and"joy in life". Perceived benefits were particularly high among the less educated and the older students. While students participating in the Older People"s Classes were older and included relatively more women, differences between the two models in motives and benefits did not exist or were slight. These results are discussed in the context of new strategies to improve university courses aimed at older students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhimilliseen turvallisuuteen kriisinhallinnan kautta – oppimisen mahdollisuuksia ja haasteita Kylmän sodan jälkeen aseelliset konfliktit ovat yleensä alkaneet niin sanotuissa hauraissa valtioissa ja köyhissä maissa, ne ovat olleet valtioiden sisäisiä ja niihin on osallistunut ei-valtiollisia aseellisia ryhmittymiä. Usein ne johtavat konfliktikierteeseen, jossa sota ja vakaammat olot vaihtelevat. Koska kuolleisuus konflikteissa voi jäädä alle kansainvälisen määritelmän (1000 kuollutta vuodessa), kutsun tällaisia konflikteja ”uusiksi konflikteiksi”. Kansainvälinen yhteisö on pyrkinyt kehittämään kriisinhallinnan ja rauhanrakentamisen malleja, jotta pysyvä rauhantila saataisiin aikaiseksi. Inhimillinen turvallisuus perustuu näkemykseen, jossa kunnioitetaan jokaisen yksilön ihmisoikeuksia ja jolla on vaikutusta myös kriisinhallinnan ja rauhanrakentamisen toteuttamiseen. Tutkimukseen kuuluu kaksi empiiristä osaa: Delfoi tulevaisuuspaneeliprosessin sekä kriisinhallintahenkilöstön haastattelut. Viisitoista eri alojen kriisinhallinta-asiantuntijaa osallistui paneeliin, joka toteutettiin vuonna 2008. Paneelin tulosten mukaan tulevat konfliktit usein ovat uusien konfliktien kaltaisia. Lisäksi kriisinhallintahenkilöstöltä edellytetään vuorovaikutus- ja kommunikaatiokykyä ja luonnollisesti myös varsinaisia ammatillisia valmiuksia. Tulevaisuuspaneeli korosti vuorovaikutus- ja kommunikaatiotaitoja erityisesti siviilikriisinhallintahenkilöstön kompetensseissa, mutta samat taidot painottuivat sotilaallisen kriisinhallinnan henkilöstön kompetensseissakin. Kriisinhallinnassa tarvitaan myös selvää työnjakoa eri toimijoiden kesken. Kosovossa työskennelleen henkilöstön haastatteluaineisto koostui yhteensä 27 teemahaastattelusta. Haastateltavista 9 oli ammattiupseeria, 10 reservistä rekrytoitua rauhanturvaajaa ja 8 siviilikriisinhallinnassa työskennellyttä henkilöä. Haastattelut toteutettiin helmi- ja kesäkuun välisenä aikana vuonna 2008. Haastattelutuloksissa korostui vuorovaikutus- ja kommunikaatiotaitojen merkitys, sillä monissa käytännön tilanteissa haastateltavat olivat ratkoneet ongelmia yhteistyössä muun kriisinhallintahenkilöstön tai paikallisten asukkaiden kanssa. Kriisinhallinnassa toteutui oppimisprosesseja, jotka usein olivat luonteeltaan myönteisiä ja informaalisia. Tällaisten onnistumisten vaikutus yksilön minäkuvaan oli myönteinen. Tällaisia prosesseja voidaan kuvata ”itseä koskeviksi oivalluksiksi”. Kriisinhallintatehtävissä oppimisella on erityinen merkitys, jos halutaan kehittää toimintoja inhimillisen turvallisuuden edistämiseksi. Siksi on tärkeää, että kriisinhallintakoulutusta ja kriisinhallintatyössä oppimista kehitetään ottamaan huomioon oppimisen eri tasot ja ulottuvuudet sekä niiden merkitys. Informaaliset oppimisen muodot olisi otettava paremmin huomioon kriisinhallintakoulutusta ja kriisinhallintatehtävissä oppimista kehitettäessä. Palautejärjestelmää olisi kehitettävä eri tavoin. Koko kriisinhallintaoperaation on saatava tarvittaessa myös kriittistä palautetta onnistumisista ja epäonnistumisista. Monet kriisinhallinnassa työskennelleet kaipaavat kunnollista palautetta työrupeamastaan. Liian rutiininomaiseksi koettu palaute ei edistä yksilön oppimista. Spontaanisti monet haastatellut pitivät tärkeänä, että kriisinhallinnassa työskennelleillä olisi mahdollisuus debriefing- tyyppiseen kotiinpaluukeskusteluun. Pelkkä tällainen mahdollisuus ilmeisesti voisi olla monelle myönteinen uutinen, vaikka tilaisuutta ei hyödynnettäisikään. Paluu kriisinhallintatehtävistä Suomeen on monelle haasteellisempaa kuin näissä tehtävissä työskentelyn aloittaminen ulkomailla. Tutkimuksen tulokset kannustavat tutkimaan kriisinhallintaa oppimisen näkökulmasta. On myös olennaista, että kriisinhallinnan palautejärjestelmiä kehitetään mahdollisimman hyvin edistämään sekä yksilöllistä että organisatorista oppimista kriisinhallinnassa. Kriisinhallintaoperaatio on oppimisympäristö. Kriisinhallintahenkilöstön kommunikaatio- ja vuorovaikutustaitojen kehittäminen on olennaista tavoiteltaessa kestävää rauhanprosessia, jossa konfliktialueen asukkaatkin ovat mukana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is remarkable the reduction in the number of medical students choosing general surgery as a career. In this context, new possibilities in the field of surgical education should be developed to combat this lack of interest. In this study, a program of surgical training based on learning with models of low-fidelity bench is designed as a complementary alternative to the various methodologies in the teaching of basic surgical skills during medical education, and to develop personal interests in career choice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

International partnership has received growing interest in the literature during the past decades due to globalization, increased technological approaches and rapid changes in competitive environments. The study specifically determines the support provided by international partners on promotion of e-learning in East Africa, assess the motives of partner selection criteria, the determinants of selecting partners, partner models and partner competence of e-learning provider. The study also evaluates obstacles of e-learning partnering strategy in East Africa learning institutions. The research adopts a descriptive survey design. Target population involved East Africa learning institutions with a list of potential institutions generated from the Ministry of Higher Education database. Through a targeted reduction of the initial database, consisting of all learning institutions, both public and private, the study created a target sample base of 200 learning institutions. Structured questionnaires scheduled were used to collect primary data. Study findings showed the approach way East African communities in selecting their e-learning partners depend on international reputation of partners, partner with ability to negotiate with foreign governments, partner with international and local experiences, nationality of foreign partner and partners with local market knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.