963 resultados para Latent Inhibition Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

L-Type Ca(2+) and K(ATP) Channels in Pacing-Induced Cardioprotection. AIMS: The L-type Ca(2+) channel, the sarcolemmal (sarcK(ATP)), and mitochondrial K(ATP) (mitoK(ATP)) channels are involved in myocardial preconditioning. We aimed at determining to what extent these channels can also participate in pacing-induced cardioprotection. METHODS: Hearts of 4-day-old chick embryos were paced in ovo during 12 hour using asynchronous intermittent ventricular stimulation at 110% of the intrinsic rate. Sham operated and paced hearts were then submitted in vitro to anoxia (30 minutes) and reoxygenation (60 minutes). These hearts were exposed to L-type Ca(2+) channel agonist Bay-K-8644 (BAY-K) or blocker verapamil, nonselective K(ATP) channel antagonist glibenclamide (GLIB), mitoK(ATP) channel agonist diazoxide (DIAZO), or antagonist 5-hydroxydecanoate. Electrocardiogram, electromechanical delay (EMD) reflecting excitation-contraction (E-C) coupling, and contractility were determined. RESULTS: Under normoxia, heart rate, QT duration, conduction, EMD, and ventricular shortening were similar in sham and paced hearts. During reoxygenation, arrhythmias ceased earlier and ventricular EMD recovered faster in paced hearts than in sham hearts. In sham hearts, BAY-K (but not verapamil), DIAZO (but not 5-hydroxydecanoate) or GLIB accelerated recovery of ventricular EMD, reproducing the pacing-induced protection. By contrast, none of these agents further ameliorated recovery of the paced hearts. CONCLUSION: The protective effect of chronic asynchronous pacing at near physiological rate on ventricular E-C coupling appears to be associated with subtle activation of L-type Ca(2+) channel, inhibition of sarcK(ATP) channel, and/or opening of mitoK(ATP) channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An antagonistic effect of voriconazole on the fungicidal activity of sequential doses of amphotericin B has previously been demonstrated in Candida albicans strains susceptible to voriconazole. Because treatment failure and the need to switch to other antifungals are expected to occur more often in infections that are caused by resistant strains, it was of interest to study whether the antagonistic effect was still seen in Candida strains with reduced susceptibility to voriconazole. With the hypothesis that antagonism will not occur in voriconazole-resistant strains, C. albicans strains with characterized mechanisms of resistance against voriconazole, as well as Candida glabrata and Candida krusei strains with differences in their degrees of susceptibility to voriconazole were exposed to voriconazole or amphotericin B alone, to both drugs simultaneously, or to voriconazole followed by amphotericin B in an in vitro kinetic model. Amphotericin B administered alone or simultaneously with voriconazole resulted in fungicidal activity. When amphotericin B was administered after voriconazole, its activity was reduced (median reduction, 61%; range, 9 to 94%). Levels of voriconazole-dependent inhibition of amphotericin B activity differed significantly among the strains but were not correlated with the MIC values (correlation coefficient, -0.19; P = 0.65). Inhibition was found in C. albicans strains with increases in CDR1 and CDR2 expression but not in the strain with an increase in MDR1 expression. In summary, decreased susceptibility to voriconazole does not abolish voriconazole-dependent inhibition of the fungicidal activity of amphotericin B in voriconazole-resistant Candida strains. The degree of interaction could not be predicted by the MIC value alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined NGF involvement in MMCs and colonic motor alterations in an ovalbumin (OVA)-induced gut dysfunction model in rats. Animals received OVA (6 weeks), with/without simultaneous K252a (TrkA antagonist) treatment. MMCs, rat mast cell protease II (RMCPII) levels and colonic contractility in vitro were assessed. OVA increased MMC density and RMCPII concentration. Spontaneous contractility was similar in both groups and inhibited by K252a. Carbachol responses were increased by OVA in a K252a-independent manner. NO-synthase inhibition increased spontaneous activity in OVA-treated animals in a K252a-dependent manner. These observations support an involvement of NGF in the functional changes observed in this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and experimental investigations suggest that allergen-specific CD4+ T-cells, IgE and the cytokines IL-4 and IL-5 play central roles in initiating and sustaining an asthmatic response by regulating the recruitment and/or activation of airways mast cells and eosinophils. IL-5 plays a unique role in eosinophil development and activation and has been strongly implicated in the aetiology of asthma. The present paper summarizes our recent investigations on the role of these cytokines using cytokine knockout mice and a mouse aeroallergen model. Investigations in IL-5-/- mice indicate that this cytokine is critical for regulating aeroallergen-induced eosinophilia, the onset of lung damage and airways hyperreactivity during allergic airways inflammation. While IL-4 and allergen-specific IgE play important roles in the regulation of allergic disease, recent investigations in IL4-/- mice suggest that allergic airways inflammation can occur via pathways which operate independently of these molecules. Activation of these IL-4 independent pathways are also intimately associated with CD4+ T-cells, IL-5 signal transduction and eosinophilic inflammation. Such IL-5 regulated pathways may also play a substantive role in the aetiology of asthma. Thus, evidence is now emerging that allergic airways disease is regulated by humoral and cell mediated processes. The central role of IL-5 in both components of allergic disease highlights the requirements for highly specific therapeutic agents which inhibit the production or action of this cytokine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of vascular endothelial growth factor (VEGF) has become the standard of care for patients presenting with wet age-related macular degeneration. However, monthly intravitreal injections are required for optimal efficacy. We have previously shown that electroporation enabled ciliary muscle gene transfer results in sustained protein secretion into the vitreous for up to 9 months. Here, we evaluated the long-term efficacy of ciliary muscle gene transfer of three soluble VEGF receptor-1 (sFlt-1) variants in a rat model of laser-induced choroidal neovascularization (CNV). All three sFlt-1 variants significantly diminished vascular leakage and neovascularization as measured by fluorescein angiography (FA) and flatmount choroid at 3 weeks. FA and infracyanine angiography demonstrated that inhibition of CNV was maintained for up to 6 months after gene transfer of the two shortest sFlt-1 variants. Throughout, clinical efficacy was correlated with sustained VEGF neutralization in the ocular media. Interestingly, treatment with sFlt-1 induced a 50% downregulation of VEGF messenger RNA levels in the retinal pigment epithelium and the choroid. We demonstrate for the first time that non-viral gene transfer can achieve a long-term reduction of VEGF levels and efficacy in the treatment of CNV.Gene Therapy advance online publication, 27 June 2013; doi:10.1038/gt.2013.36.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alteracions durant el desenvolupament cerebral produirien canvis en la connectivitat neuronal i la bioquímica cel•lular que podrien resultar en una disfunció cognitiva i/o emocional, desembocant a trastorns psiquiàtrics. Les neurotrofines intervenen en els processos del neurodesenvolupament i en la funcionalitat del cervell adult i, conseqüentment, serien bons candidats com a factors de predisposició en diverses malalties mentals. S’ha suggerit la implicació del receptor de la neurotrofina 3, TrkC, en el trastorn de pànic. Nosaltres proposem que la sobreexpressió del gen NTRK3 (TrkC) és un mediador comú dels desencadenants genètics i ambientals d’aquest trastorn. Concretament, la seva desregulació podria produir canvis estructurals i funcionals a l’escorça cerebral dels pacients pel seu paper durant l’establiment dels circuïts corticals i la neuroplasticitat a l’adult, probablement esdevenint elements de predisposició a patir atacs de pànic. Els objectius principals d’aquest treball han estat: 1/determinar la contribució específica del gen NTRK3 a les alteracions de l’escorça cerebral observades en pacients, utilitzant un model murí modificat genèticament (TgNTRK3), i 2/analitzar l’impacte específic de la sobreexpressió de NTRK3 sobre la corticogènesi durant estadis embrionaris o postnatals estudiant la neurogènesi i la neuritogènesi. Els resultats indiquen que la sobreexpressió de NTRK3 als ratolins produeix una reducció del gruix de l’escorça frontal, recapitulant la hipofrontalitat dels pacients, que comportaria una menor inhibició dels nuclis subcorticals del sistema límbic com l’amígdala, i alteracions citoarquitectòniques a l’escorça prefrontal medial que recolzen la hipòtesi del seu mal funcionament. Tanmateix, els ratolins TgNTRK3 presenten canvis estructurals a l’escorça somatosensorial, suggerint que el processament de la informació sensorial podria estar alterat, el que encara no s’ha explorat en pacients. La sobreexpressió de NTRK3 també afecta la neuritogènesi en cultius primaris corticals i modifica la resposta de les neurones a l’estimulació amb neurotrofines. Per tant, el fenotip cortical adult dels TgNTRK3 podria dependre d’alteracions durant la corticogènesi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In terms of the treatment of illicit drug abuse, methadone maintenance is a well researched and widely applied systematic response. The approach to primary care methadone treatment in Ireland is based on the methadone protocol. Primary care plays a central role in the delivery of methadone treatment. Beginning with a view that a system evolves within the constraints and influencing factors of its context, the aim of this thesis is to model the process that has developed by which patients on primary care methadone treatment are referred to counselling. It investigates the role primary care practitioners perceive they have in relation to managing the psychosocial aspects of the methadone patient's treatment regime. It analyzes individual medical practitioner counselling referral mechanisms to determine what common processes operate across different practitioners. It identifies the factors that influence the use of counselling on primary care methadone programmes and structures these in a cause/effect model. This research used interviews and documentary analysis to acquire grounded data. The sample consisted primarily of medical practitioners involved in the delivery of methadone programmes. Others closely involved in the implementation of drug treatment in the primary care context made up the balance of interviewees. The study used a grounded theory methodology to induce the process that was latent in the grounded data. Concepts emerging were grouped under the headings of referral factors, decision making factors and factors related to the unique positioning of primary care at the interface between medicine and society. The core finding was that, in primary care in Ireland, there is no psychological model to complement the pharmacological intervention of methadone substitution. The findings from this study offer insight into the factors at work and their impacts, in the context of the use of counselling in primary care methadone treatment. The study suggests a possible direction for further evolution of opiate abuse treatment in Ireland which would transform it from a harm reduction to a holistic patient centric paradigm.This resource was contributed by The National Documentation Centre on Drug Use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. RESULTS Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. CONCLUSIONS Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (G(brain)) as function of plasma glucose (G(plasma)) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant K(t), apparent maximum rate constant T(max), glucose consumption rate CMR(glc), and the iso-inhibition constant K(ii) that suggests G(brain) as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where G(brain) was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by K(t) ranging from 1.5 to 3.5 mM, T(max)/CMR(glc) from 4.6 to 5.6, and K(ii) from 51 to 149 mM. It was noteworthy that K(t) was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by G(brain), predicting that G(brain) eventually approaches a maximum concentration. However, since K(ii) largely exceeds G(plasma), iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: We demonstrated that DC Bead (Biocompatibles UK, Ltd) could be loaded with sunitinib and injected intra-arterially in the rabbit without unexpected toxicity. The purpose of this study is to evaluate the antitumoral effect of sunitinib eluting beads in the VX2 tumor model of liver cancer. Methods: VX2 tumors were implanted in the left liver lobe of New-Zealand white rabbits. Animals were assigned to 3 groups: Group 1 (n=6) received 1.5mg of sunitinib loaded in 0.05ml of 100-300um DC Bead, group 2 (n=5) received 0.05ml of 100-300um DC Bead, group 3 (n=5) received 0.05ml NaCl 0.9% in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were followed for survival until day 15. Liver enzymes were measured daily. In group 1, plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrificed. After sacrifice, the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination. Results: In group 1, no animals died during follow-up. In group 2, 2 animals died during follow-up on day x. In control group 3, 3 animals died during follow up on day x. In group 1 plasmatic sunitinib levels remained under therapeutic concentration throughout the experiment. Very high concentrations of sunitinib were measured in the liver tissue 24 and 15 days after embolization. Inhibition of the phosphorylation of the RTK was demonstrated at 24h and 15 days in groups 1. Sunitinib eluting beads seemed to penetrate in the tumor more effectively and there was more necrosis around the beads than their bland counterparts. Conclusions: Administration of sunitinib eluting beads in VX2 carrying rabbits resulted invery high drug concentrations at the site of embolization with minimal systemic passage. Despite the very high tissular sunitinib concentration we did not observe any additional toxicity with loaded beads. Sunitinib eluting beads inhibit the activation of RTK's triggered by ischemia and seem to prolong survival of the treated animals. Therefore we consider that local treatment with sunitinib may provide a promising approach for the treatment of liver cancer.