943 resultados para LONGITUDINAL MODE-OPERATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate passive mode-locking of a bismuth-doped fiber laser using a singlewall nanotube-based saturable absorber. Stable operation in the all-normal dispersion and average soliton regime is obtained, with an all-fiber integrated format. © 2010 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faults can slip either aseismically or through episodic seismic ruptures, but we still do not understand the factors which determine the partitioning between these two modes of slip. This challenge can now be addressed thanks to the dense set of geodetic and seismological networks that have been deployed in various areas with active tectonics. The data from such networks, as well as modern remote sensing techniques, indeed allow documenting of the spatial and temporal variability of slip mode and give some insight. This is the approach taken in this study, which is focused on the Longitudinal Valley Fault (LVF) in Eastern Taiwan. This fault is particularly appropriate since the very fast slip rate (about 5 cm/yr) is accommodated by both seismic and aseismic slip. Deformation of anthropogenic features shows that aseismic creep accounts for a significant fraction of fault slip near the surface, but this fault also released energy seismically, since it has produced five M_w>6.8 earthquakes in 1951 and 2003. Moreover, owing to the thrust component of slip, the fault zone is exhumed which allows investigation of deformation mechanisms. In order to put constraint on the factors that control the mode of slip, we apply a multidisciplinary approach that combines modeling of geodetic observations, structural analysis and numerical simulation of the "seismic cycle". Analyzing a dense set of geodetic and seismological data across the Longitudinal Valley, including campaign-mode GPS, continuous GPS (cGPS), leveling, accelerometric, and InSAR data, we document the partitioning between seismic and aseismic slip on the fault. For the time period 1992 to 2011, we found that about 80-90% of slip on the LVF in the 0-26 km seismogenic depth range is actually aseismic. The clay-rich Lichi M\'elange is identified as the key factor promoting creep at shallow depth. Microstructural investigations show that deformation within the fault zone must have resulted from a combination of frictional sliding at grain boundaries, cataclasis and pressure solution creep. Numerical modeling of earthquake sequences have been performed to investigate the possibility of reproducing the results from the kinematic inversion of geodetic and seismological data on the LVF. We first investigate the different modeling strategy that was developed to explore the role and relative importance of different factors on the manner in which slip accumulates on faults. We compare the results of quasi dynamic simulations and fully dynamic ones, and we conclude that ignoring the transient wave-mediated stress transfers would be inappropriate. We therefore carry on fully dynamic simulations and succeed in qualitatively reproducing the wide range of observations for the southern segment of the LVF. We conclude that the spatio-temporal evolution of fault slip on the Longitudinal Valley Fault over 1997-2011 is consistent to first order with prediction from a simple model in which a velocity-weakening patch is embedded in a velocity-strengthening area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with a general analysis of wave interactions in periodic structures and particularly periodic thin film dielectric waveguides.

The electromagnetic wave propagation in an asymmetric dielectric waveguide with a periodically perturbed surface is analyzed in terms of a Floquet mode solution. First order approximate analytical expressions for the space harmonics are obtained. The solution is used to analyze various applications: (1) phase matched second harmonic generation in periodically perturbed optical waveguides; (2) grating couplers and thin film filters; (3) Bragg reflection devices; (4) the calculation of the traveling wave interaction impedance for solid state and vacuum tube optical traveling wave amplifiers which utilize periodic dielectric waveguides. Some of these applications are of interest in the field of integrated optics.

A special emphasis is put on the analysis of traveling wave interaction between electrons and electromagnetic waves in various operation regimes. Interactions with a finite temperature electron beam at the collision-dominated, collisionless, and quantum regimes are analyzed in detail assuming a one-dimensional model and longitudinal coupling.

The analysis is used to examine the possibility of solid state traveling wave devices (amplifiers, modulators), and some monolithic structures of these devices are suggested, designed to operate at the submillimeter-far infrared frequency regime. The estimates of attainable traveling wave interaction gain are quite low (on the order of a few inverse centimeters). However, the possibility of attaining net gain with different materials, structures and operation condition is not ruled out.

The developed model is used to discuss the possibility and the theoretical limitations of high frequency (optical) operation of vacuum electron beam tube; and the relation to other electron-electromagnetic wave interaction effects (Smith-Purcell and Cerenkov radiation and the free electron laser) are pointed out. Finally, the case where the periodic structure is the natural crystal lattice is briefly discussed. The longitudinal component of optical space harmonics in the crystal is calculated and found to be of the order of magnitude of the macroscopic wave, and some comments are made on the possibility of coherent bremsstrahlung and distributed feedback lasers in single crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report what is believed to be the first demonstration of the laser action of Yb3+ -doped Gd2SiO5 (Yb:GSO) crystal pumped by a 940-nm laser diode at room temperature. The threshold of laser generation is only 0.85 kW/cm(2), which is smaller than the theoretic threshold of Yb:YAG (1.54 kW/cm(2)). The laser wavelength is 1090 mn. With a 2.5% output coupler, the maximum output power is 415 mW under a pump power of 5 W. By using the SESAM, the Q-switched mode locking and CW mode-locked operations are demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrated continuous-wave ( CW) and Q-switched operation of a room-temperature Ho: YAlO3 laser that is resonantly end-pumped by a diode-pumped Tm: YLF laser at 1.91 mu m. The CW Ho: YAlO3 laser generated 5.5 W of linearly polarized (E parallel to c) output at 2118 nm with beam quality factor of M-2 approximate to 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1-mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first demonstration, to our knowledge, of the femtosecond laser operation by using a new alloyed Yb:GYSO crystal as the gain medium. With a 5 at. % Yb3+-doped sample and chirped mirrors for dispersion compensation, we obtained pulses as short as 210 fs at the center wavelength of 1093 nm. The average mode-locking power is 300 mW, and the pulse repetition frequency is 80 MHz. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method has been used to design a power semiconductor device which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between the IGBT and thyristor modes of operation. This paper discusses single-gated devices with multiple modes and aspects of their switching behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decades mode-locked fibre lasers have been extensively refined and developed, with most research efforts focussing on employing rare-earth doped fibres as the active elements [1]. This presents the problem that operation is limited to regions of the spectrum where such elements exhibit gain [1]. Raman amplification in silica fibre is an attractive way to overcome this spectral limitation, with gain available across the entire transparency window (300 nm - 2300 nm) [2-4]. There have been a number of reports utilising Raman gain in ultrashort pulse sources [2-4], however none using a broadband saturable absorber, such as carbon nanotubes [5-7] and graphene [7-9]. A broadband saturable absorber is an essential pre-requisite in order to fully exploit the wavelength flexibility provided by the Raman gain in short pulse mode-locked fiber lasers. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional technology for generating ultrashort pulses relies on soliton-like operation based mode-locking. In this regime, the pulse duration is limited by nonlinear optical effects[1]. One method to mitigate these effects is to alternate segments of normal and anomalous group velocity dispersion (GVD) fiber[1]. This configuration is known as dispersion-managed soliton design. It decreases the nonlinear optical effects and reduces the pulse duration[1]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafast passively mode-locked lasers with spectral tuning capability and high output power have widespread applications in biomedical research, spectroscopy and telecommunications [1,2]. Currently, the dominant technology is based on semiconductor saturable absorber mirrors (SESAMs) [2,3]. However, these typically have a narrow tuning range, and require complex fabrication and packaging [2,3]. A simple, cost-effective alternative is to use Single Wall Carbon Nanotubes (SWNTs) [4,10] and Graphene [10,14]. Wide-band operation is possible using SWNTs with a wide diameter distribution [5,10]. However, SWNTs not in resonance are not used and may contribute to unwanted insertion losses [10]. The linear dispersion of the Dirac electrons in graphene offers an ideal solution for wideband ultrafast pulse generation [10,15]. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of a piezoelectric high frequency ultrasound (HFUS) array with a microfabricated application specific integrated circuit (ASIC) performing a range of functions has several advantages for ultrasound imaging. The number of signal cables between the array/electronics and the data acquisition / imaging system can be reduced, cutting costs and increasing functionality. Electrical impedance matching is also simplified and the same approach can reduce overall system dimensions for applications such as endoscopic ultrasound. The work reported in this paper demonstrates early ASIC operation with a piezocomposite HFUS array operating at approximately 30 MHz. The array was tested in three different modes. Clear signals were seen in catch-mode, with an external transducer as a source of ultrasound, and in pitch-mode with the external transducer as a receiver. Pitch-catch mode was also tested successfully, using sequential excitation on three array elements, and viable signals were detected. However, these were relatively small and affected by interference from mixed-signal sources in the ASIC. Nevertheless, the functionality and compatibility of the two main components of an integrated HFUS - ASIC device have been demonstrated and the means of further optimization are evident.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the principle of operation, construction and testing of a liquid crystal lens which is controlled by distributing voltages across the control electrodes, which are in turn controlled by adjusting the phase of the applied voltages. As well as (positive and negative) defocus, then lenses can be used to control tip/tilt, astigmatism, and to create variable axicons. © 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents dynamic and steady-state performance of the Brushless Doubly-Fed Machine (BDFM) operating as a variable speed drive. A simple closed-loop control system is used which only requires a speed feedback. The controller is capable of stabilising the machine when changes in speed and torque are applied. The machine starts in cascade mode and then makes a transition to the synchronous mode to reach the desired speed. This will allow a uni-directional converter to be used. The experiments included in this paper were carried out on a 180 frame size BDFM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A control algorithm is presented that addresses the stability issues inherent to the operation of monolithic mode-locked laser diodes. It enables a continuous pulse duration tuning without any onset of Q-switching instabilities. A demonstration of the algorithm performance is presented for two radically different laser diode geometries and continuous pulse duration tuning between 0.5 ps to 2.2 ps and 1.2 ps to 10.2 ps is achieved. With practical applications in mind, this algorithm also facilitates control over performance parameters such as output power and wavelength during pulse duration tuning. The developed algorithm enables the user to harness the operational flexibility from such a laser with 'push-button' simplicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.