957 resultados para LIGHT-EMITTING DIODES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light emitting polymers (LEPs) are considered as the second generation of conducting polymers. A Prototype LEP device based on electroluminescence emission of poly(p-phenylenevinylene) (PPV) was first assembled in 1990. LEPs have progressed tremendously over the past 20 years. The development of new LEP derivatives are important because polymer light emitting diodes (PLEDs) can be used for the manufacture of next-generation displays and other optoelectronic applications such as lasers, photovoltaic cells and sensors. Under this circumstance, it is important to understand thermal, structural, morphological, electrochemical and photophysical characteristics of luminescent polymers. In this thesis the author synthesizes a series of light emitting polymers that can emit three primary colors (RGB) with high efficiency

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10(-4) Ohm cm, 8.08 cm(2)/V-s and -1.5 x 10(21) cm(-3), respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO(2) thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m(2) as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de este trabajo es un estudio profundo del crecimiento selectivo de nanoestructuras de InGaN por epitaxia de haces moleculares asistido por plasma, concentrandose en el potencial de estas estructuras como bloques constituyentes en LEDs de nueva generación. Varias aproximaciones al problema son discutidas; desde estructuras axiales InGaN/GaN, a estructuras core-shell, o nanoestructuras crecidas en sustratos con orientaciones menos convencionales (semi polar y no polar). La primera sección revisa los aspectos básicos del crecimiento auto-ensamblado de nanocolumnas de GaN en sustratos de Si(111). Su morfología y propiedades ópticas son comparadas con las de capas compactas de GaN sobre Si(111). En el caso de las columnas auto-ensambladas de InGaN sobre Si(111), se presentan resultados sobre el efecto de la temperatura de crecimiento en la incorporación de In. Por último, se discute la inclusión de nanodiscos de InGaN en las nanocolumnas de GaN. La segunda sección revisa los mecanismos básicos del crecimiento ordenado de nanoestructuras basadas en GaN, sobre templates de GaN/zafiro. Aumentando la relación III/V localmente, se observan cambios morfológicos; desde islas piramidales, a nanocolumnas de GaN terminadas en planos semipolares, y finalmente, a nanocolumnas finalizadas en planos c polares. Al crecer nanodiscos de InGaN insertados en las nanocolumnas de GaN, las diferentes morfologias mencionadas dan lugar a diferentes propiedades ópticas de los nanodiscos, debido al diferente carácter (semi polar o polar) de los planos cristalinos involucrados. La tercera sección recoge experimentos acerca de los efectos que la temperatura de crecimiento y la razón In/Ga tienen en la morfología y emisión de nanocolumnas ordenadas de InGaN crecidas sobre templates GaN/zafiro. En el rango de temperaturas entre 650 y 750 C, la incorporacion de In puede modificarse bien por la temperatura de crecimiento, o por la razón In/Ga. Controlar estos factores permite la optimización de la longitud de onda de emisión de las nanocolumnas de InGaN. En el caso particular de la generación de luz blanca, se han seguidos dos aproximaciones. En la primera, se obtiene emisión amarilla-blanca a temperatura ambiente de nanoestructuras donde la región de InGaN consiste en un gradiente de composiciones de In, que se ha obtenido a partir de un gradiente de temperatura durante el crecimiento. En la segunda, el apilamiento de segmentos emitiendo en azul, verde y rojo, consiguiendo la integración monolítica de estas estructuras en cada una de las nanocolumnas individuales, da lugar a emisores ordenados con un amplio espectro de emisión. En esta última aproximación, la forma espectral puede controlarse con la longitud (duración del crecimiento) de cada uno de los segmentos de InGaN. Más adelante, se presenta el crecimiento ordenado, por epitaxia de haces moleculares, de arrays de nanocolumnas que son diodos InGaN/GaN cada una de ellas, emitiendo en azul (441 nm), verde (502 nm) y amarillo (568 nm). La zona activa del dispositivo consiste en una sección de InGaN, de composición constante nominalmente y longitud entre 250 y 500 nm, y libre de defectos extendidos en contraste con capas compactas de InGaN de similares composiciones y espesores. Los espectros de electroluminiscencia muestran un muy pequeño desplazamiento al azul al aumentar la corriente inyectada (desplazamiento casi inexistente en el caso del dispositivo amarillo), y emisiones ligeramente más anchas que en el caso del estado del arte en pozos cuánticos de InGaN. A continuación, se presenta y discute el crecimiento ordenado de nanocolumnas de In(Ga)N/GaN en sustratos de Si(111). Nanocolumnas ordenadas emitiendo desde el ultravioleta (3.2 eV) al infrarrojo (0.78 eV) se crecieron sobre sustratos de Si(111) utilizando una capa compacta (“buffer”) de GaN. La morfología y eficiencia de emisión de las nanocolumnas emitiendo en el rango espectral verde pueden ser mejoradas ajustando las relaciones In/Ga y III/N, y una eficiencia cuántica interna del 30% se deriva de las medidas de fotoluminiscencia en nanocolumnas optimizadas. En la siguiente sección de este trabajo se presenta en detalle el mecanismo tras el crecimiento ordenado de nanocolumnas de InGaN/GaN emitiendo en el verde, y sus propiedades ópticas. Nanocolumnas de InGaN/GaN con secciones largas de InGaN (330-830 nm) se crecieron tanto en sustratos GaN/zafiro como GaN/Si(111). Se encuentra que la morfología y la distribución espacial del In dentro de las nanocolumnas dependen de las relaciones III/N e In/Ga locales en el frente de crecimiento de las nanocolumnas. La dispersión en el contenido de In entre diferentes nanocolumnas dentro de la misma muestra es despreciable, como indica las casi identicas formas espectrales de la catodoluminiscencia de una sola nanocolumna y del conjunto de ellas. Para las nanocolumnas de InGaN/GaN crecidas sobre GaN/Si(111) y emitiendo en el rango espectral verde, la eficiencia cuántica interna aumenta hasta el 30% al disminuir la temperatura de crecimiento y aumentar el nitrógeno activo. Este comportamiento se debe probablemente a la formación de estados altamente localizados, como indica la particular evolución de la energía de fotoluminiscencia con la temperatura (ausencia de “s-shape”) en muestras con una alta eficiencia cuántica interna. Por otro lado, no se ha encontrado la misma dependencia entre condiciones de crecimiento y efiencia cuántica interna en las nanoestructuras InGaN/GaN crecidas en GaN/zafiro, donde la máxima eficiencia encontrada ha sido de 3.7%. Como alternativa a las nanoestructuras axiales de InGaN/GaN, la sección 4 presenta resultados sobre el crecimiento y caracterización de estructuras core-shell de InGaN/GaN, re-crecidas sobre arrays de micropilares de GaN fabricados por ataque de un template GaN/zafiro (aproximación top-down). El crecimiento de InGaN/GaN es conformal, con componentes axiales y radiales en el crecimiento, que dan lugar a la estructuras core-shell con claras facetas hexagonales. El crecimiento radial (shell) se ve confirmado por medidas de catodoluminiscencia con resolución espacial efectuadas en un microscopio electrónico de barrido, asi como por medidas de microscopía de transmisión de electrones. Más adelante, el crecimiento de micro-pilares core-shell de InGaN se realizó en pilares GaN (cores) crecidos selectivamente por epitaxia de metal-orgánicos en fase vapor. Con el crecimiento de InGaN se forman estructuras core-shell con emisión alrededor de 3 eV. Medidas de catodoluminiscencia resuelta espacialmente indican un aumento en el contenido de indio del shell en dirección a la parte superior del pilar, que se manifiesta en un desplazamiento de la emisión de 3.2 eV en la parte inferior, a 3.0 eV en la parte superior del shell. Este desplazamiento está relacionado con variaciones locales de la razón III/V en las facetas laterales. Finalmente, se demuestra la fabricación de una estructura pin basada en estos pilares core-shell. Medidas de electroluminiscencia resuelta espacialmente, realizadas en pilares individuales, confirman que la electroluminiscencia proveniente del shell de InGaN (diodo lateral) está alrededor de 3.0 eV, mientras que la emisión desde la parte superior del pilar (diodo axial) está alrededor de 2.3 eV. Para finalizar, se presentan resultados sobre el crecimiento ordenado de GaN, con y sin inserciones de InGaN, en templates semi polares (GaN(11-22)/zafiro) y no polares (GaN(11-20)/zafiro). Tras el crecimiento ordenado, gran parte de los defectos presentes en los templates originales se ven reducidos, manifestándose en una gran mejora de las propiedades ópticas. En el caso de crecimiento selectivo sobre templates con orientación GaN(11-22), no polar, la formación de nanoestructuras con una particular morfología (baja relación entre crecimiento perpedicular frente a paralelo al plano) permite, a partir de la coalescencia de estas nanoestructuras, la fabricación de pseudo-templates no polares de GaN de alta calidad. ABSTRACT The aim of this work is to gain insight into the selective area growth of InGaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. Several nanocolumn-based approaches such as standard axial InGaN/GaN structures, InGaN/GaN core-shell structures, or InGaN/GaN nanostructures grown on semi- and non-polar substrates are discussed. The first section reviews the basics of the self-assembled growth of GaN nanocolumns on Si(111). Morphology differences and optical properties are compared to those of GaN layer grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanocolumns grown on Si(111) is described. The second section reviews the basic growth mechanisms of selectively grown GaNbased nanostructures on c-plane GaN/sapphire templates. By increasing the local III/V ratio morphological changes from pyramidal islands, to GaN nanocolumns with top semi-polar planes, and further to GaN nanocolumns with top polar c-planes are observed. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semipolar and polar nature of the crystal planes involved. The third section reports on the effect of the growth temperature and In/Ga ratio on the morphology and light emission characteristics of ordered InGaN nanocolumns grown on c-plane GaN/sapphire templates. Within the growth temperature range of 650 to 750oC the In incorporation can be modified either by the growth temperature, or the In/Ga ratio. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength. In order to achieve white light emission two approaches are used. First yellow-white light emission can be obtained at room temperature from nanostructures where the InGaN region is composition-graded by using temperature gradients during growth. In a second approach the stacking of red, green and blue emitting segments was used to achieve the monolithic integration of these structures in one single InGaN nanocolumn leading to ordered broad spectrum emitters. With this approach, the spectral shape can be controlled by changing the thickness of the respective InGaN segments. Furthermore the growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells. Next the selective area growth of In(Ga)N/GaN nanocolumns on Si(111) substrates is discussed. Ordered In(Ga)N/GaN nanocolumns emitting from ultraviolet (3.2 eV) to infrared (0.78 eV) were then grown on top of GaN-buffered Si substrates. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting in the green could be substantially improved by tuning the In/Ga and total III/N ratios, where an estimated internal quantum efficiency of 30 % was derived from photoluminescence data. In the next section, this work presents a study on the selective area growth mechanisms of green-emitting InGaN/GaN nanocolumns and their optical properties. InGaN/GaN nanocolumns with long InGaN sections (330-830nm) were grown on GaN/sapphire and GaN-buffered Si(111). The nanocolumn’s morphology and spatial indium distribution is found to depend on the local group (III)/N and In/Ga ratios at the nanocolumn’s top. A negligible spread of the average indium incorporation among different nanostructures is found as indicated by similar shapes of the cathodoluminescence spectra taken from single nanocolumns and ensembles of nanocolumns. For InGaN/GaN nanocolumns grown on GaN-buffered Si(111), all emitting in the green spectral range, the internal quantum efficiency increases up to 30% when decreasing growth temperature and increasing active nitrogen. This behavior is likely due to the formation of highly localized states, as indicated by the absence of a complete s-shape behavior of the PL peak position with temperature (up to room temperature) in samples with high internal quantum efficiency. On the other hand, no dependence of the internal quantum efficiency on the growth conditions is found for InGaN/GaN nanostructures grown on GaN/sapphire, where the maximum achieved efficiency is 3.7%. As alternative to axial InGaN/GaN nanostructures, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods etched from a GaN/sapphire template. Growth of InGaN/GaN is conformal, with axial and radial growth components leading to core-shell structures with clear hexagonal facets. The radial InGaN growth (shell) is confirmed by spatially resolved cathodoluminescence performed in a scanning electron microscopy as well as in scanning transmission electron microscopy. Furthermore the growth of InGaN core-shell micro pillars using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template is demonstrated. Upon InGaN overgrowth core-shell structures with emission at around 3.0 eV are formed. With spatially resolved cathodoluminescence, an increasing In content towards the pillar top is found to be present in the InGaN shell, as indicated by a shift of CL peak position from 3.2 eV at the shell bottom to 3.0 eV at the shell top. This shift is related to variations of the local III/V ratio at the side facets. Further, the successful fabrication of a core-shell pin diode structure is demonstrated. Spatially resolved electroluminescence measurements performed on individual micro LEDs, confirm emission from the InGaN shell (lateral diode) at around 3.0 eV, as well as from the pillar top facet (axial diode) at around 2.3 eV. Finally, this work reports on the selective area growth of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the GaN templates is strongly reduced as indicated by TEM and a dramatic improvement of the optical properties. In case of SAG on non-polar (11-22) templates the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of the nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by contract no. US AEC AT(11-1) 1469."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Methods: Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Results: Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p <0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. Conclusion: A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we experimentally demonstrate a 10 Mb/s error free visible light communications (VLC) system using polymer light-emitting diodes (PLEDs) for the first time. The PLED under test is a blue emitter with ∼600 kHz bandwidth. Having such a low bandwidth means the introduction of an intersymbol interference (ISI) induced penalty at higher transmission speeds and thus the requirement for an equalizer. In this work we improve on previous literature by implementing a decision feedback equalizer, rather than a linear equalizer. Considering 7% and 20% forward error correction codes, transmission speeds up to ∼12 Mb/s can be supported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the thermal and structural properties of different commercial dental resins: Filtek(TM) Z-350, Grandio(A (R)), Tetric Ceram(A (R)), and TPH Spectrum(A (R)). The purpose of the present study was to evaluate quantitatively the photo-polymerization behavior and the effect of filler contents on the kinetic cures of the dental resins by using Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques. We have successfully obtained the low and high glass transition T (g) values of the dental composite resins from DSC curves. It was also observed a good agreement between the both T (g) values, activation energies from thermal degradation, and the degree of conversion obtained for all samples. The results have shown that Tetric Ceram(A (R)) dental resin presented the higher T (g) values, activation energy of 215 +/- A 6 KJ mol(-1), and the higher degree of conversion (63%) when compared to the other resins studied herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the vertical cavity surface emitting diodes and detectors are fabricated by using the epitaxial wafer with resonant cavity structure. Their characteristics are analyzed. The light emitters have high spectral purity of 4.8nm and high electroluminescence intensity of 0.7mW while injection current is 50mA. A 1*16 array of surface emitting light device is tested on line by probes and then used for module. The light detectors have wavelength selectivity and space selectivity. The required difference in input mirror reflectivity between emitters and detectors can easily be achieved though varying the numbers of top DBR period by etching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the detailed conversion process of the dominant electroluminescence (EL) mechanism in a device with Eu(TTA)(3)phen (TTA=thenoyltrifluoroacetone, phen=1,10-phenanthroline) doped CBP (4,4(')-N,N-'-dicarbazole-biphenyl) film as the emitting layer was investigated by analyzing the evolution of carrier distribution on dye and host molecules with increasing voltage. Firstly, it was confirmed that only electrons can be trapped in Eu(TTA)(3)phen doped CBP. As a result, holes and electrons would be situated on CBP and Eu(TTA)(3)phen molecules, respectively, and thus creates an unbalanced carrier distribution on both dye and host molecules. With the help of EL and photoluminescence spectra, the distribution of holes and electrons on both Eu(TTA)(3)phen and CBP molecules was demonstrated to change gradually with increasing voltage. Therefore, the dominant EL mechanism in this device changes gradually from carrier trapping at relatively low voltage to Forster energy transfer at relatively high voltage.