997 resultados para LARVAL MORPHOLOGY
Resumo:
A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.
Resumo:
In this study I offer a diachronic solution for a number of difficult inflectional endings in Old Church Slavic nominal declensions. In this context I address the perhaps most disputed and the most important question of the Slavic nominal inflectional morphology: whether there was in Proto-Slavic an Auslautgesetz (ALG), a law of final syllables, that narrowed the Proto-Indo-European vowel */o/ to */u/ in closed word-final syllables. In addition, the work contains an exhaustive morphological classification of the nouns and adjectives that occur in canonical Old Church Slavic. I argue that Proto-Indo-European */o/ became Proto-Slavic */u/ before word-final */s/ and */N/. This conclusion is based on the impossibility of finding credible analogical (as opposed to phonological) explanations for the forms supporting the ALG hypothesis, and on the survival of the neuter gender in Slavic. It is not likely that the */o/-stem nominative singular ending */-u/ was borrowed from the accusative singular, because the latter would have been the only paradigmatic form with the stem vowel */-u-/. It is equally unlikely that the ending */-u/ was borrowed from the */u/-stems, because the latter constituted a moribund class. The usually stated motivation for such an analogical borrowing, i.e. a need to prevent the merger of */o/-stem masculines with neuters of the same class, is not tenable. Extra-Slavic, as well as intra-Slavic evidence suggests that phonologically-triggered mergers between two semantically opaque genders do not tend to be prevented, but rather that such mergers lead to the loss of the gender opposition in question. On the other hand, if */-os/ had not become */-us/, most nouns and, most importantly, all adjectives and pronouns would have lost the formal distinction between masculines and neuters. This would have necessarily resulted in the loss of the neuter gender. A new explanation is given for the most apparent piece of evidence against the ALG hypothesis, the nominative-accusative singular of the */es/-stem neuters, e.g. nebo 'sky'. I argue that it arose in late Proto-Slavic dialects, replacing regular nebe, under the influence of the */o/- and */yo/-stems where a correlation had emerged between a hard root-final consonant and the termination -o, on the one hand, and a soft root-final consonant and the termination -e, on the other.
Resumo:
Seven discrete stages and substages of moulting in the ornate rock lobster, Panulirus ornatus, have been distinguished by microscopic examination of the cuticle and setae of the pleopods . The diagnostic features and the duration of each of the stages are described. Freezing did not visually alter the tissue features used to identify each moult stage. Pleopod morphology can reliably indicate whether a lobster has moulted within the previous 24 h or is within 72 h of the next ecdysis.
Resumo:
In newly invaded communities, interspecific competition is thought to play an important role in determining the success of the invader and its impact on the native community. In southern Australia, the native Polistes humilis was the predominant social wasp prior to the arrival of the exotic Vespula germanica (Hymenoptera: Vespidae). Both species forage for similar resources (water, pulp, carbohydrate and protein prey), and concerns have arisen about potential competition between them. The aim of this study was to identify the protein foods that these wasps feed on. As many prey items are masticated by these wasps to the degree that they cannot be identified using conventional means, morphological identification was complemented by sequencing fragments of the mitochondrial 16S rRNA gene. GenBank searches using blast and phylogenetic analyses were used to identify prey items to at least order level. The results were used to construct complete prey inventories for the two species. These indicate that while P. humilis is restricted to feeding on lepidopteran larvae, V. germanica collects a variety of prey of invertebrate and vertebrate origin. Calculated values of prey overlap between the two species are used to discuss the implications of V. germanica impacting on P. humilis. Results obtained are compared to those gained by solely 'conventional' methods, and the advantages of using DNA-based taxonomy in ecological studies are emphasized.
Resumo:
Botryosphaeria rhodina (anamorph Lasiodiplodia theobromae) is a common endophyte and opportunistic pathogen on more than 500 tree species in the tropics and subtropics. During routine disease surveys of plantations in Australia and Venezuela several isolates differing from L. theobromae were identified and subsequently characterized based upon morphology and ITS and EF1-a nucleotide sequences. These isolates grouped into three strongly supported clades related to but different from the known taxa, B. rhodina and L. gonubiensis, These have been described here as three new species L. venezuelensis sp. nov., L. crassispora sp. nov. and L. rubropurpurea sp. nov. The three could be distinguished easily from each other and the two described species of Lasiodiplodia, thus confirming phylogenetic separations. Furthermore all five Lasiodiplodia spp. now recognized separated from Diplodia spp. and Dothiorella spp. with 100% bootstrap support.
Resumo:
Since 1989, researchers with the Department of Primary Industries and Fisheries (DPI&F) in Queensland, Australia, have successfully used controlled low-water exchange green-water cultures to rear the larvae of estuarine fishes and crustaceans through to metamorphosis. High survivals and excellent fry condition have been achieved for several commercially important endemic species produced for various projects. They include barramundi or sea bass, Lates calcarifer, Australian bass, Macquaria novemaculeata, dusky flathead, Platycephalus fuscus, sand whiting, Sillago ciliata, red sea bream or snapper, Pagrus auratus, banana prawn, Fenneropenaeus merguiensis, and others. The consistent success of our standardised and relatively simple approach at different localities has led to it being incorporated into general fingerling production practices at several establishments in Australia. Although post-metamorphosis rearing methods have differed for each species investigated, due to various biological and behavioural traits and project requirements, these larval rearing methods have been successful with few species-specific modifications. Initially modelled on the Taiwanese approach to rearing Penaeids in aerated low-water exchange cultures, the approach similarly appears to rely on a beneficial assemblage of micro-organisms. Conceptually, these micro-organisms may include a mixture of the air-borne primary invaders of pure phytoplankton cultures when exposed to outdoor conditions. Whilst this would vary with different sites, our experiences with these methods have consistently been favourable. Mass microalgal cultures with eco-physiological youth are used to regularly augment larval fish cultures so that rearing conditions simulate an exponential growth-phase microalgal bloom. Moderate to heavy aeration prevents settlement of particulate matter and encourages aerobic bacterial decomposition of wastes. The green-water larval rearing approach described herein has demonstrated high practical utility in research and commercial applications, and has greatly simplified marine finfish hatchery operations whilst generally lifting production capacities for metamorphosed fry in Australia. Its potential uses in areas of aquaculture other than larviculture are also discussed.
Resumo:
Seed cotton yield and morphological changes in leaf growth were examined under drying soil with different phosphorus (P) concentrations in a tropical climate. Frequent soil drying is likely to induce a decrease in nutrients particularly P due to reduced diffusion and poor uptake, in addition to restrictions in available water, with strong interactive effects on plant growth and functioning. Increased soil P in field and in-ground soil core studies increased the seed cotton yield and related morphological growth parameters in a drying soil, with hot (daily maximum temperature >33°C) and dry conditions (relative humidity, 25% to 35%), particularly during peak boll formation and filling stage. The soil water content in the effective rooting zone (top 0.4 m) decreased to -1.5 MPa by day 5 of the soil drying cycle. However, the increased seed cotton yield for the high-P plants was closely related to increasing leaf area with increased P supply. Plant height, leaf fresh mass and leaf area per plant were positively related to the leaf P%, which increased with increasing P supply. Low P plants were lower in plant height, leaf area, and leaf tissue water in the drying soil. Individual leaf area and the water content of the fresh leaf (ratio of dry mass to fresh mass) were significantly dependent on leaf P%.
Resumo:
This paper presents a validation study on the application of a novel interslice interpolation technique for musculoskeletal structure segmentation of articulated joints and muscles on human magnetic resonance imaging data. The interpolation technique is based on morphological shape-based interpolation combined with intensity based voxel classification. Shape-based interpolation in the absence of the original intensity image has been investigated intensively. However, in some applications of medical image analysis, the intensity image of the slice to be interpolated is available. For example, when manual segmentation is conducted on selected slices, the segmentation on those unselected slices can be obtained by interpolation. We proposed a two- step interpolation method to utilize both the shape information in the manual segmentation and local intensity information in the image. The method was tested on segmentations of knee, hip and shoulder joint bones and hamstring muscles. The results were compared with two existing interpolation methods. Based on the calculated Dice similarity coefficient and normalized error rate, the proposed method outperformed the other two methods.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.
Resumo:
OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.
Resumo:
Consonance in urban form is contingent on the continuity of the fine grain architectural features that are imbued in the commodity of the evolved historic urban fabric. A city's past can be viewed therefore as a repository of urban form characteristics from which concise architectural responses can result in a congruent urban landscape. This thesis proposes new methods to evaluate the interplay of architectural elements that can be traced throughout the lifespan of the particular evolving urban areas under scrutiny, and postulates a theory of how the mapping of historical urban form can correlate with deriving parameters for new buildings.
Resumo:
Background The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. Aim There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. Method This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Conclusions Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design.
Resumo:
Recent years have witnessed a large volume of works on the modification of graphene; however, an understanding of the associated morphology or mechanical properties changes is still lacking, which is vital for its engineering implementation. By taking the C4F fluorination as an example, we find that the morphology of both graphene sheet (GS) and graphene nanoribbon (GNR) can be effectively tailored by fluorination patterning via molecular dynamics simulations. The fluorine atom produces out-of-plane forces which trigger several intriguing morphology changes to monolayer graphene, including zigzag, folded, ruffle, nanoscroll, and chain structures. Notably, for multilayer GNR, the delamination and climbing phenomena of the surface layer are observed. Further studies show that the fluorination pattern can also be utilized to modulate the mechanical properties of graphene, e.g., about 40% increase of the effective yield strain is observed for the examined GNR with fluorination patterns. This study not only demonstrates the significant impacts on the morphology of graphene from fluorination but also suggests an effective avenue to tailor the morphology and thus mechanical properties of GS and GNR.
Resumo:
Climate change is emerging as the single greatest threat to coral-reef ecosystems.The most immediate impacts will be a loss of diversity and changes to fish community composition and may lead to eventual declines in abundance and productivity of key fisheries species. A key component of this research is to assess effects of projected changes in environmental conditions (temperature and ocean acidity) due to climate change on reproduction, growth and development of coral trout (Plectropomus leopardis).Ultimately, this research will fill key knowledge gaps about climate change impacts on larger fishes, which are fundamental to optimizing resilience-based management, and in turn improve the adaptive capacity of industries and communities along the Great Barrier Reef.