206 resultados para LACTIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive post-acidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth and the metabolism of Bifidobacterium adolescentis MB 239 fermenting GOS, lactose, galactose, and glucose were investigated. An unstructerd unsegregated model for growth of B. adolescentis MB 239 in batch cultures was developed and kinetic parameters were calculated with a Matlab algorithm. Galactose was the best carbon source; lactose and GOS led to lower growth rate and cellular yield, but glucose was the poorest carbon source. Lactate, acetate and ethanol yields allowed calculation of the carbon fluxes toward fermentation products. Similar distribution between 3- and 2-carbon products was observed on all the carbohydrates (45 and 55%, respectively), but ethanol production was higher on glucose than on GOS, lactose and galactose, in decreasing order. Based on the stoichiometry of the fructose 6-phosphate shunt and on the carbon distribution among the products, ATP yield was calculated on the different carbohydrates. ATP yield was the highest on galactose, while it was 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondance among ethanol production, low ATP yields, and low biomass production was established demonstrating that carbohydrate preferences may result from different sorting of carbon fluxes through the fermentative pathway. During GOS fermentation, stringent selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were first to be consumed, and a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β-(1-4) galactosides can be hydrolysed before they are taken up. The physiology of Bifidobacterium adolescentis MB 239 toward xylooligosaccharides (XOS) was also studied and our attention was focused on an extracellular glycosyl-hydrolase (β-Xylosidase) expressed by a culture of B. adolescentis grown on XOS as sole carbon source. The extracellular enzyme was purified from the the supernatant, which was dialyzed and concentrated by ultrafiltration. A two steps purification protocol was developed: the sample was loaded on a Mono-Q anion exchange chromatography and then, the active fractions were pooled and β-Xylosidase was purified by gel filtration chromatography on a Superdex-75. The enzyme was characterized in many aspects. β- Xylosidase was an homo-tetramer of 160 kDa as native molecular mass; it was a termostable enzyme with an optimum of temperature at 53 °C and an optimum of pH of 6.0. The kinetics parameter were calculated: km = 4.36 mM, Vmax = 0.93 mM/min. The substrate specificity with different di-, oligo- and polysaccharides was tested. The reactions were carried out overnight at pH 7 and at the optimum of temperature and the carbohydrates hydrolysis were analyzed by thin layer chromatography (TLC). Only glycosyl-hydrolase activities on XOS and on xylan were detected, whereas sucrose, lactose, cellobiose, maltose and raffinose were not hydrolyzed. It’s clearly shown that β-Xylosidase activity was higher than the Xylanase one. These studies on the carbohydrate preference of a strain of Bifidobacterium underlined the importance of the affinity between probiotics and prebiotics. On the basis of this concept, together with Barilla G&R f.lli SpA, we studied the possibility to develop a functional food containing a synbiotic. Three probiotic strains Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 were studied to assess their suitability for utilization in synbiotic products on the basis of antioxidative activity, glutathione production, acid and bile tolerance, carbohydrates fermentation and viability in food matrices. Bile and human gastric juice resistance was tested in vitro to estimate the transit tolerance in the upper gastrointestinal tract. B. lactis and L. plantarum were more acid tolerant than S. thermophilus. All the strains resisted to bile. The growth kinetics on 13 prebiotic carbohydrates were determined. Galactooligosaccharides and fructo-oligosaccharides were successfully utilized by all the strains and could be considered the most appropriate prebiotics to be used in effective synbiotic formulations. The vitality of the three strains inoculated in different food matrices and maintained at room temperature was studied. The best survival of Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 was found in food chocolate matrices. Then an in vivo clinical trial was carried out for 20 healthy volunteers. The increase in faecal bifidobacteria and lactobacilli populations and the efficacy of the pre-prototype was promising for the future develop of potential commercial products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Ripening evaluation of two different Pecorino cheese varieties ripened according either to a traditional method in plant and in cave. Different ripening features have been analyzed in order to evaluate the cave as possible ripening environment with the aim of obtaining a peculiar product which could also establish an added value to the cultural heritage of the local place in which it has been originally manufactured. Methods and Results: Chemical-physical features of Pecorino cheese have been initially analyzed into two different ripening environments and experimentations, among which: pH, weight reduction and subsequent water activity. Furthermore, the microbial composition has been characterized in relationship with the two different ripening environments, undertaking a variety of microbial groups, such as: lactic bacteria, staphylococci, yeasts, lactococci, enterobacteria, enterococci. Besides, an additional analysis for the in-cave adaptability evaluation has been the identification of biogenic amines inside the Pecorino cheese (2-phenilethylamine, putrescine, cadaverine, hystidine, tyramine, spermine and spermidine). Further analysis were undertaken in order to track the lipid profile evolution, reporting the concentration of the cheese free fatty acids in object, in relation with ripening time, environment and production. In order to analyse the flavour compounds present in Pecorino cheese, the SPME-GC-MS technique has been widely employed. As a result, it is confirmed the trend showed by the short-chain free fatty acids, that is to say the fatty acids which are mostly involved in conveying a stronger flavor to the cheese. With the purpose of assessing the protheolytic patterns of the above-mentioned Pecorino cheese in the two different ripening environments and testing methods, the technique SDS-PAGE has been employed into the cheese insoluble fraction, whereas the SDS-PAGE technique has been carried out into the cheese soluble portion. Furthermore, different isolated belonging to various microbial groups have been genotypically characterized though the ITS-PCR technique with the aim to identify the membership species. With reference to lactic bacillus the characterized species are: Lactobacillus brevis, Lactobacillus curvatus and Lactobacillus paraplantarum. With reference to lactococci the predominant species is Lactococcus lactis, coming from the employed starter used in the cheese manufacturing. With reference to enterococcus, the predominant species are Enterococcus faecium and Enterococcus faecalis. Moreover, Streptococcus termophilus and Streptococcus macedonicus have been identified too. For staphylococci the identified species are Staphyilococcus equorum, Staphylococcus saprophyfiticus and Staphylococcus xylosus. Finally, a sensorial analysis has been undertaken through on one side a consumer test made by inexperienced consumers, and on the other side through a panel test achieved by expert consumers. From such test Pecorino cheese ripened in cave were found to be more pleasant in comparison with Pecorino cheese ripened in plant. Conclusions: The proposed approach and the undertaken analysis showed the cave as preferential ripening environment for Pecorino cheese and for the development of a more palatable product and safer for consumers’ health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bifidobacterium is an important genus of the human gastrointestinal microbiota, affecting several host physiological features. Despite the numerous Bifidobacterium related health-promoting activities, there is still a dearth of information about the molecular mechanisms at the basis of the interaction between this microorganism and the host. Bacterial surface associated proteins may play an important role in this interaction because of their ability to intervene with host molecules, as recently reported for the host protein plasminogen. Plasminogen is the zymogen of the trypsin-like serine protease plasmin, an enzyme with a broad substrate specificity. Aim of this thesis is to deepen the knowledge about the interaction between Bifidobacterium and the human plasminogen system and its role in the Bifidobacterium-host interaction process. As a bifidobacterial model, B. animalis subsp. lactis BI07 has been used because of its large usage in dairy and pharmaceutical preparations. We started from the molecular characterization of the interaction between plasminogen and one bifidobacterial plasminogen receptor, DnaK, a cell wall protein showing high affinity for plasminogen, and went on with the study of the impact of intestinal environmental factors, such as bile salts and inflammation, on the plasminogen-mediated Bifidobacterium-host interaction. According to our in vitro findings, by enhancing the activation of the bifidobacterial bound plasminogen to plasmin, the host inflammatory response results in the decrease of the bifidobacterial adhesion to the host enterocytes, favouring bacterial migration to the luminal compartment. Conversely, in the absence of inflammation, plasminogen acts as a molecular bridge between host enterocytes and bifidobacteria, enhancing Bifidobacterium adhesion. Furthermore, adaptation to physiological concentrations of bile salts enhances the capability of this microorganism to interact with the host plasminogen system. The host plasminogen system thus represents an important and flexible tool used by bifidobacteria in the cross-talk with the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the human gut microbiota in impacting host’s health has been widely studied in the last decade. Notably, it has been recently demonstrated that diet and nutritional status are among the most important modifiable determinants of human health, through a plethora of presumptive mechanisms among which microbiota-mediated processes are thought to have a relevant role. At present, probiotics and prebiotics represent a useful dietary approach for influencing the composition and activity of the human gut microbial community. The present study is composed of two main sections, aimed at elucidating the probiotic potential of the yeast strain K. marxianus B0399, as well as the promising putative prebiotic activity ascribable to four different flours, naturally enriched in dietary fibres content. Here, by in vitro studies we demonstrated that K. marxianus B0399 possesses a number of beneficial and strain-specific properties desirable for a microorganism considered for application as a probiotics. Successively, we investigated the impact of a novel probiotic yoghurt containing B. animalis subsp. lactis Bb12 and K. marxianus B0399 on the gut microbiota of a cohort of subjects suffering from IBS and enrolled in a in vivo clinical study. We demonstrated that beneficial effects described for the probiotic yoghurt were not associated to significant modifications of the human intestinal microbiota. Additionally, using a colonic model system we investigated the impact of different flours (wholegrain rye and wheat, chickpeas and lentils 50:50, and barley milled grains) on the intestinal microbiota composition and metabolomic output, combining molecular and cellular analysis with a NMR metabolomics approach. We demonstrated that each tested flour showed peculiar and positive modulations of the intestinal microbiota composition and its small molecule metabolome, thus supporting the utilisation of these ingredients in the development of a variety of potentially prebiotic food products aimed at improving human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wie alle Eukaryoten besitzen auch höhere Pflanzen ein mikrotubuläres Cytoskelett. Einige Funktionen dieses Cytoskeletts sind relativ stark konserviert, andere dagegen scheinen sehr pflanzenspezifisch zu sein. Dies betrifft insbesondere charakteristische mikrotubuläre Netzwerke, die bei der Neubildung und der Verstärkung der Zellwände wichtige Rollen übernehmen. Wie der Aufbau dieser Netzwerke kontrolliert wird, ist bisher relativ unklar. Typische Mikrotubuli organisierende Zentren (MTOC), insbesondere Centrosomen oder Spindelpolkörper, sind bei höheren Pflanzen nicht beobachtet worden. Von pilzlichen und tierischen Organismen weiß man, dass gamma-Tubulin (gTUB) mit seinen assoziierten Proteinen in den MTOC bei der Nukleation von Mikrotubuli eine Schlüsselfunktion hat. Dieses Mitglied der Tubulin-Superfamilie wird aber auch in Pflanzen gefunden, dessen genaue Funktion bisher unbekannt ist. Zu Beginn der Arbeit wurden mittels in silico Berechnungen Strukturmodelle des pflanzlichen gTUBs aus Nicotiana tabacum erarbeitet, da die Struktur, die zu einem Verständnis der pflanzlichen Wachstumsregulation beitragen könnte, bisher unbekannt ist. Auf Grundlage der bioinformatischen Daten konnte für weitere Studien eine notwendige gTUB-Deletionsmutante entwickelt werden. Für Röntgendiffraktionsstudien und gTUB-Interaktionspartneranalysen war die Verfügbarkeit verhältnismäßig großer Proteinmengen notwendig. Die Expression der gTUB-Volllängensequenz in gelöster und aktiver Form stellte einen immanent wichtigen Zwischenschritt dar. Das Escherichia coli T7/lacO-Expressionssystem lieferte, trotz vielversprechender Erfolge in der Vergangenheit, kein gelöstes rekombinantes gTUB. So wurden zwar verhältnismäßig hohe Expressionsraten erzielt, aber das rekombinante gTUB lag quantitativ als Inclusion bodies vor. Eine Variationen der Expressionsparameter sowie umfangreiche Versuche mittels verschiedenster Konstrukte sowie potentiell die Löslichkeit erhöhenden Tags gTUB in gelöster Form in E. coli zu exprimieren blieben erfolglos. Eine Denaturierung der Inclusion bodies und Rückfaltung wurde aufgrund der wohl bei der Tubulinfaltung notwendigen komplexeren Chaperone sowie thermodynamischer Überlegungen ausgeschlossen. Die höher evolvierte Chaperonausstattung war ein Hauptgrund für die Verwendung der eukaryotischen Hefe-Expressionssysteme K. lactis und des S. cerevisiae-Stammes FGY217 zur gTUB-Expression. So konnten nach der Selektion nur transgene Hefe-Zellen dokumentiert werden, die die gTUB-Expressionskassette nachweislich an der vorgesehenen Zielposition in ihrem Genom integrierten, aber keine dokumentierbare Expression zeigten. Die wahrscheinlichste Begründung hierfür ist, dass ein erhöhter intrazellulärer gTUB-Titer mit dem Zellwachstum und der Zellteilung dieser eukaryotischen Organismen interferierte und durch Rückkopplungen die rekombinante gTUB-CDS aus N. tabacum ausgeschaltet wurde. Der Versuch einer transienten gTUB-Überexpression in differenzierten Blattgeweben höherer Pflanzen war eine logische Konsequenz aus den vorherigen Ergebnissen und lieferte, wenn auch nicht die für eine Proteinkristallisation notwendigen Mengen, gelöstes gTUB. Bestrebungen einer stabilen Transfektion von A. thaliana oder BY-2-Zellkulturen mit einer gTUB-CDS lieferten keine transgenen Organismen, was starke Interferenzen der rekombinanten gTUB-CDS in den Zellen vermuten lies. Transfektionsversuche mit nur GFP tragenden Konstrukten ergaben hingegen eine hohe Anzahl an transgenen Organismen, die auch verhältnismäßig starke Expressionsraten zeigten. Die erzielten Proteinmengen bei der transienten gTUB-Überexpression in N. benthamiana Blattgeweben, in Co-Expression mit dem Posttransriptional Gene Silencing-Suppressorprotein p19, waren für einen Pull-Down sowie eine massenspektroskopische Analyse der Interaktionspartner ausreichend und ergaben Befunde. Eine abschließende Auswertung des erarbeiteten massenspektroskopischen Datensatzes wird jedoch erst dann möglich sein, wenn das Tabak-Proteom vollständig sequenziert ist. Die Erweiterung der bestehenden pflanzlichen Vergleichsdatenbanken um das bisher bekannte Tabak-Proteom vervielfachte die Anzahl der in dieser Studie identifizierten gTUB-Interaktionspartner. Interaktionen mit dem TCP1-Chaperon untermauern die Hypothese der zur Faltung pflanzlichen gTUBs notwendigen Chaperone. Beobachtete gTUB-Degradationsmuster in Verbindung mit Interaktionen des 26S-Proteasoms deuten auf eine Gegenregulationen bei erhöhtem gTUB-Titer auf Proteinebene hin. Da Blattgewebe selbst nur noch über eine sehr geringe und inhomogene Teilungsaktivität verfügen ist diese Regulation hoch spannend. Auch konnte durch Co-Expression des PTGS-Suppressorproteins p19 gezeigt werden, dass bei der gTUB-Expression eine Regulation auf RNA-Ebene erfolgt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I lantibiotici sono molecole peptidiche prodotte da un gran numero di batteri Gram-positivi, posseggono attività antibatterica contro un ampio spettro di germi, e rappresentano una potenziale soluzione alla crescente problematica dei patogeni multi-resistenti. La loro attività consiste nel legame alla membrana del bersaglio, che viene quindi destabilizzata mediante l’induzione di pori che determinano la morte del patogeno. Tipicamente i lantibiotici sono formati da un “leader-peptide” e da un “core-peptide”. Il primo è necessario per il riconoscimento della molecola da parte di enzimi che effettuano modifiche post-traduzionali del secondo - che sarà la regione con attività battericida una volta scissa dal “leader-peptide”. Le modifiche post-traduzionali anticipate determinano il contenuto di amminoacidi lantionina (Lan) e metil-lantionina (MeLan), caratterizzati dalla presenza di ponti-tioetere che conferiscono maggior resistenza contro le proteasi, e permettono di aggirare la principale limitazione all’uso dei peptidi in ambito terapeutico. La nisina è il lantibiotico più studiato e caratterizzato, prodotto dal batterio L. lactis che è stato utilizzato per oltre venti anni nell’industria alimentare. La nisina è un peptide lungo 34 amminoacidi, che contiene anelli di lantionina e metil-lantionina, introdotti dall’azione degli enzimi nisB e nisC, mentre il taglio del “leader-peptide” è svolto dall’enzima nisP. Questo elaborato affronta l’ingegnerizzazione della sintesi e della modifica di lantibiotici nel batterio E.coli. In particolare si affronta l’implementazione dell’espressione eterologa in E.coli del lantibiotico cinnamicina, prodotto in natura dal batterio Streptomyces cinnamoneus. Questo particolare lantibiotico, lungo diciannove amminoacidi dopo il taglio del leader, subisce modifiche da parte dell’enzima CinM, responsabile dell’introduzione degli aminoacidi Lan e MeLan, dell’enzima CinX responsabile dell’idrossilazione dell’acido aspartico (Asp), e infine dell’enzima cinorf7 deputato all’introduzione del ponte di lisinoalanina (Lal). Una volta confermata l’attività della cinnamicina e di conseguenza quella dell’enzima CinM, si è deciso di tentare la modifica della nisina da parte di CinM. A tal proposito è stato necessario progettare un gene sintetico che codifica nisina con un leader chimerico, formato cioè dalla fusione del leader della cinnamicina e del leader della nisina. Il prodotto finale, dopo il taglio del leader da parte di nisP, è una nisina completamente modificata. Questo risultato ne permette però la modifica utilizzando un solo enzima invece di due, riducendo il carico metabolico sul batterio che la produce, e inoltre apre la strada all’utilizzo di CinM per la modifica di altri lantibiotici seguendo lo stesso approccio, nonché all’introduzione del ponte di lisinoalanina, in quanto l’enzima cinorf7 necessita della presenza di CinM per svolgere la sua funzione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’obbiettivo principale della mia tesi è stato di valutare le potenzialità applicative di un ceppo di Lactobacillus salivarius, un ceppo di Lactobacillus crispatus ed un ceppo di Lactococcus lactis nisina produttore per la produzione di squacquerone. I ceppi erano stati selezionati sulla base di proprietà tecnologiche e antibatteriche. I ceppi oggetto di studio sono stati addizionati come colture aggiuntive, assieme alle colture starter normalmente utilizzate nel processo produttivo di formaggio squacquerone. I formaggi ottenuti sono stati caratterizzati e confrontati con il prodotto tradizionale per le loro caratteristiche microbiologiche, chimico-fisiche, in termini di vitalità delle colture microbiche impiegate e carico di microrganismi degradativi durante la conservazione refrigerata, per le loro caratteristiche reologiche, per il profilo in molecole volatili e per le caratteristiche sensoriali. Tutti i ceppi utilizzati hanno dimostrato una elevata capacità di sopravvivenza alle condizioni di maturazione/conservazione tipiche per questa tipologia di prodotto. Il ceppo di Lactobacillus salivarius e Lactococcus lactis hanno determinato un significativo incremento, rispetto al controllo, di molecole volatili quali chetoni e acidi grassi a corta catena che sono precursori di numerosissime molecole di aroma. Ulteriormente, i ceppi Lactobacillus salivarius e Lactococcus lactis hanno determinato una precoce diminuzione della durezza e della consistenza del prodotto (dopo 6 giorni), ed un incremento dopo 11 giorni di adesività e viscosità rispetto ai campioni di controllo e a quelli ottenuti con Lactobacillus crispatus indice di una più precoce proteolisi. I dati dell’analisi sensoriale indicano che i formaggi ottenuti con i ceppi Lactobacillus salivarius e Lactococcus lactis erano nettamente preferiti dai consumatori dopo 4, 6, e 8 giorni di conservazione. Concludendo, i risultati ottenuti dimostrano come l’addizione delle colture aggiuntive selezionate può rappresentare una strategia vincente per incrementare la shelf-life di formaggi freschi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of 'winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same alpha-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the 'winged helix' type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest - hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues - according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% oftheoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure species results. Chapter 4 is an evaluation of the potential for producing Trichoderma reesei cellulose hydrolases in the Kluyveromyces lactis yeast expression system. The exoglucanases Cel6A and Cel7A, and the endoglucanase Cel7B were inserted separately into the K. lactis and the enzymes were analyzed for activity on various substrates. Recombinant Cel7B was found to be active on carboxymethyl cellulose and Avicel powdered cellulose substrates. Recombinant Cel6A was also found to be active on Avicel. Recombinant Cel7A was produced, but no enzymatic activity was detected on any substrate. Chapter 5 presents a new method for enzyme improvement studies using enzyme co-expression and yeast growth rate measurements as a potential high-throughput expression and screening system in K. lactis yeast. Two different K. lactis strains were evaluated for their usefulness in growth screening studies, one wild-type strain and one strain which has had the main galactose metabolic pathway disabled. Sequential transformation and co-expression of the exoglucanase Cel6A and endoglucanase Cel7B was performed, and improved hydrolysis rates on Avicel were detectable in the cell culture supernatant. Future work should focus on hydrolysis of natural substrates, developing the growth screening method, and utilizing the K. lactis expression system for directed evolution of enzymes.