904 resultados para Knight shift
Resumo:
Multiphoton ionization of NO via intermediate Rydberg states with ultra-short laser pulses is investigated with time-resolved photoelectron spectroscopy in combination with fermosecond pump-probe technology. The Rydberg states of NO, which are characterized by obvious ac-Stark shift in ultra-strong laser field, can be tuned in resonance to ionize NO molecule at one's will with identical laser pulses, i.e., one can 'select' resonance path to ionization. The results shown in this Letter demonstrate that the states holding notable dynamic Stark shift provide us another dimension to chemical control with strong laser field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.
Resumo:
The covalency of each bond in divalent europium doped hosts CaSiO3, SrSiO3, BaSiO3, Sr2LiSiO4F, Ba5SiO4Cl6 and Ba5SiO4Br6 were calculated by using the complicate crystal chemical bond theory. The relationship between the Stokes shift and the bond properties of Eu2+ in these crystals was discussed. The result demonstrates that, in the isostructural crystals that being doped with Eu2+, there is a more precise connection between the magnitude of Stokes shift and the mean covalency of the dopant site.
Resumo:
A series of solid electrolytes Ce1-xSmxO2-y (x=0similar to0.6) were prepared by sol-gel method. XRD measurement showed that single-phase solid solution was formed in all investigated ranges at 160 degreesC, which is a significantly lower synthesis temperature compared to traditional solid state reaction. High temperature X-ray, ESR, and Raman scattering were used to characterize the samples. ESR measurement showed that ESR with sample irradiated by high-energy particle is an effective way to study the defect structure. These changes in the Raman spectrum are attributed to O vacancies, which are introduced into the lattice when tetravalent Ce4+ is substituted by trivalent Sm3+.
Resumo:
A new structure analysis method for lanthanide complexes was proposed, that is, none paramagnetic shift tri-lanthanide mixture method, It was found that the paramagnetic induced shift could be cancelled by mixing three kinds of paramagnetic lanthanide ions in appropriate proportion. As a result, the chelating sites would he seen simplely from the half widths and the relative distances between lanthanide ion and the ligand nucleus could be calculated from the relaxation time (T-1) or the half width. Care should be addressed that the analysis method is suitable for the systems in which intramolecular arrangements and intermolecular ligand exchanges are relatively fasten NMR time scale used.
Resumo:
The aqueous complexation of lanthanide ions with citrate in pH 7.4 solution has been investigated with use of the lanthanide-induced shift and paramagnetic relaxation rate enhancement methods. The results show that citrate coordinates via hydroxyl and central carboxylate groups with lanthanide ions and forms 1:2 (Ln/cit) isostructural complexes through the lanthanide series. A new possible coordination geometry deduced from our experimental data is suggested and discussed.
Resumo:
A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.
Resumo:
We measured the stable carbon isotope ratios for muscle of the upland buzzards (Buteo hemilasius), plateau pika (Ochotoma curzoniae), root vole (Microtus oeconomus), plateau zokor (Myospalax fontanierii) and passerine bird species at the Haibei Alpine Meadow Ecosystem Research Station (HAMERS), and provided diet information of upland buzzards with the measurement of stable carbon isotopes in tissues of these consumers. The results showed that δ~(13)C values of small mammals and passerine bird species ranged from -25.57‰ to -25.78‰ (n = 12), and from -24.81‰ to -22.51% (n = 43), respectively, δ~(13)C values of the upland buzzards ranged from -22.60‰ to -23.10‰ when food was not available. The difference in δ~(13)C values (2.88‰±0.31‰) between upland buzzards and small mammals was much larger than the differences reported previously, 1‰-2‰, and showed significant difference, while 1.31‰±0.34‰ between upland buzzard and passerine bird species did not differ from the previously reported trophic fractionation difference of 1‰-2‰. Estimation of trophic position indicated that upland buzzards stand at trophic position 4.23, far from that of small mammals, i.e., upland buzzards scarcely captured small mammals as food at the duration of food shortage. According to isotope mass balance model, small mammals contributed 7.89% to 35.04% of carbon to the food source of the upland buzzards, while passerine bird species contributed 64.96% to 92.11%. Upland buzzards turned to passerine bird species as food during times of shortage of small mammals. δ~(13)C value, a useful indicator of diet, indicates that the upland buzzards feed mainly on passerine bird species rather than small mammals due to "you are what you eat" when small mammal preys are becoming scarce.
Resumo:
Reproductive failure results in many plant species becoming endangered. However, little is known of how and to what extent pollinator shifts affect reproductive performance of endangered species as a result of the artificial introduction of alien insects. In this study we examined breeding systems, visitor species, visiting frequency and seed set coefficients of Swertia przewalskii in two years that had different dominant pollinator species (native vs. alien). Flowers of this species were protandrous and herkogamous and insects were needed for the production of seeds. The stigmatic receptivity of this species was shorter than for other gentians. No significant difference in seed set coefficient was found for hand-pollinated plants between the two years, indicating that pollinator shift only had a minor effect on this plant's breeding system. The commonest pollinators in 2002 were native bumblebees, alien honeybees and occasional solitary bees, however, only alien honeybees were observed in 2004. The flower visitation rate in both years was relatively high, although the total visit frequency decreased significantly in 2004. The control flowers without any treatment produced significantly fewer seed sets in 2004 than in 2002. In the past decade the seed production of this species may have partly decreased due to pollination by alien honeybees, however, we suggest that they might have acted as alternative pollinators ensuring seed production of S. przewalskii when native pollinators were unavailable. The main reason that this plant is endangered is probably the result of habitat destruction, but changes in land use, namely intensified agricultural practice and unfavorable animal husbandry have also contributed to its decline. We recommend that in-situ conservation, including the establishment of a protected area, is the best way to preserve this species effectively.
Resumo:
Repeated-batch cultures of strawberry cells (Fragaria ananassa cv. Shikinari) subjected to four medium-shift procedures (constant LS medium, constant B5 medium, alternation between LS and B5 starting from LS and alternation between LS and B5 starting from B5) were investigated for the enhanced anthocyanin productivity. To determine the optimum period for repeated batch cultures, two medium-shift periods of 9 and 14 days were studied, which represent the end of the exponential growth phase and the stationary phase. By comparison with the corresponding batch cultures, higher anthocyanin productivity was achieved for all the repeated-batch cultures at a 9-day medium-shift period. The average anthocyanin productivity was enhanced 1.7-and 1.76-fold by repeated-batch cultures in constant LS and constant B5 medium at a 9-day shift period for 45 days, respectively. No further improvement was observed when the medium was alternated between LS (the growth medium) and B5 (the production medium). Anthocyanin production was unstable at a 14-day shift period regardless of the medium-shift procedures. The results show that it is feasible to improve anthocyanin production by a repeated-batch culture of strawberry cells.
Resumo:
A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30 degrees C (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthocyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was decreased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influenced by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg.g-fresh cell(-1) was obtained on day 9 by a temperature-shift from 30 degrees C, after 3-d culture, to 15 degrees C. The highest anthocyanin yield of 318 mg.L-1 on day 12 was achieved when the temperature was shifted from 30 degrees C, after 5-d culture, to 20 degrees C. For a global optimization of both the yield and productivity, the optimum anthocyanin yield and productivity of 272 mg.L-1 and 30.2 mg.L-1.d(-1) on day 9 were achieved by a two-stage culture with a temperature-shift from 30 degrees C after 3 d to 20 degrees C.