840 resultados para Interpreting and translation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Arbeit wird ein vergröbertes (engl. coarse-grained, CG) Simulationsmodell für Peptide in wässriger Lösung entwickelt. In einem CG Verfahren reduziert man die Anzahl der Freiheitsgrade des Systems, so dass manrngrössere Systeme auf längeren Zeitskalen untersuchen kann. Die Wechselwirkungspotentiale des CG Modells sind so aufgebaut, dass die Peptid Konformationen eines höher aufgelösten (atomistischen) Modells reproduziert werden.rnIn dieser Arbeit wird der Einfluss unterschiedlicher bindender Wechsel-rnwirkungspotentiale in der CG Simulation untersucht, insbesondere daraufhin,rnin wie weit das Konformationsgleichgewicht der atomistischen Simulation reproduziert werden kann. Im CG Verfahren verliert man per Konstruktionrnmikroskopische strukturelle Details des Peptids, zum Beispiel, Korrelationen zwischen Freiheitsgraden entlang der Peptidkette. In der Dissertationrnwird gezeigt, dass diese “verlorenen” Eigenschaften in einem Rückabbildungsverfahren wiederhergestellt werden können, in dem die atomistischen Freiheitsgrade wieder in die CG-Strukturen eingefügt werden. Dies gelingt, solange die Konformationen des CG Modells grundsätzlich gut mit der atomistischen Ebene übereinstimmen. Die erwähnten Korrelationen spielen einerngrosse Rolle bei der Bildung von Sekundärstrukturen und sind somit vonrnentscheidender Bedeutung für ein realistisches Ensemble von Peptidkonformationen. Es wird gezeigt, dass für eine gute Übereinstimmung zwischen CG und atomistischen Kettenkonformationen spezielle bindende Wechselwirkungen wie zum Beispiel 1-5 Bindungs- und 1,3,5-Winkelpotentiale erforderlich sind. Die intramolekularen Parameter (d.h. Bindungen, Winkel, Torsionen), die für kurze Oligopeptide parametrisiert wurden, sind übertragbarrnauf längere Peptidsequenzen. Allerdings können diese gebundenen Wechselwirkungen nur in Kombination mit solchen nichtbindenden Wechselwirkungspotentialen kombiniert werden, die bei der Parametrisierung verwendet werden, sind also zum Beispiel nicht ohne weiteres mit einem andere Wasser-Modell kombinierbar. Da die Energielandschaft in CG-Simulationen glatter ist als im atomistischen Modell, gibt es eine Beschleunigung in der Dynamik. Diese Beschleunigung ist unterschiedlich für verschiedene dynamische Prozesse, zum Beispiel für verschiedene Arten von Bewegungen (Rotation und Translation). Dies ist ein wichtiger Aspekt bei der Untersuchung der Kinetik von Strukturbildungsprozessen, zum Beispiel Peptid Aggregation.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small molecules affecting biological processes in plants are widely used in agricultural practice as herbicides or plant growth regulators and in basic plant sciences as probes to study the physiology of plants. Most of the compounds were identified in large screens by the agrochemical industry, as phytoactive natural products and more recently, novel phytoactive compounds originated from academic research by chemical screens performed to induce specific phenotypes of interest. The aim of the present PhD thesis is to evaluate different approaches used for the identification of the primary mode of action (MoA) of a phytoactive compound. Based on the methodologies used for MoA identification, three approaches are discerned: a phenotyping approach, an approach based on a genetic screen and a biochemical screening approach.rnFour scientific publications resulting from my work are presented as examples of how a phenotyping approach can successfully be applied to describe the plant MoA of different compounds in detail.rnI. A subgroup of cyanoacrylates has been discovered as plant growth inhibitors. A set of bioassays indicated a specific effect on cell division. Cytological investigations of the cell division process in plant cell cultures, studies of microtubule assembly with green fluorescent protein marker lines in vivo and cross resistant studies with Eleusine indica plants harbouring a mutation in alpha-tubulin, led to the description of alpha-tubulin as a target site of cyanoacrylates (Tresch et al., 2005).rnII. The MoA of the herbicide flamprop-m-methyl was not known so far. The studies described in Tresch et al. (2008) indicate a primary effect on cell division. Detailed studies unravelled a specific effect on mitotic microtubule figures, causing a block in cell division. In contrast to other inhibitors of microtubule rearrangement such as dinitroanilines, flamprop-m-methyl did not influence microtubule assembly in vitro. An influence of flamprop-m-methyl on a target within the cytoskeleton signalling network could be proposed (Tresch et al., 2008).rnIII. The herbicide endothall is a protein phosphatase inhibitor structurally related to the natural product cantharidin. Bioassay studies indicated a dominant effect on dark-growing cells that was unrelated to effects observed in the light. Cytological characterisation of the microtubule cytoskeleton in corn tissue and heterotrophic tobacco cells showed a specific effect of endothall on mitotic spindle formation and ultrastructure of the nucleus in combination with a decrease of the proliferation index. The observed effects are similar to those of other protein phosphatase inhibitors such as cantharidin and the structurally different okadaic acid. Additionally, the observed effects show similarities to knock-out lines of the TON1 pathway, a protein phosphatase-regulated signalling pathway. The data presented in Tresch et al. (2011) associate endothall’s known in vitro inhibition of protein phosphatases with in vivo-effects and suggest an interaction between endothall and the TON1 pathway.rnIV. Mefluidide as a plant growth regulator induces growth retardation and a specific phenotype indicating an inhibition of fatty acid biosynthesis. A test of the cuticle functionality suggested a defect in the biosynthesis of very-long-chain fatty acids (VLCFA) or waxes. Metabolic profiling studies showed similarities with different groups of VLCFA synthesis inhibitors. Detailed analyses of VLCFA composition in tissues of duckweed (Lemna paucicostata) indicated a specific inhibition of the known herbicide target 3 ketoacyl-CoA synthase (KCS). Inhibitor studies using a yeast expression system established for plant KCS proteins verified the potency of mefluidide as an inhibitor of plant KCS enzymes. It could be shown that the strength of inhibition varied for different KCS homologues. The Arabidopsis Cer6 protein, which induces a plant growth phenotype similar to mefluidide when knocked out, was one of the most sensitive KCS enzymes (Tresch et al., 2012).rnThe findings of my own work were combined with other publications reporting a successful identification of the MoA and primary target proteins of different compounds or compound classes.rnA revised three-tier approach for the MoA identification of phytoactive compounds is proposed. The approach consists of a 1st level aiming to address compound stability, uniformity of effects in different species, general cytotoxicity and the effect on common processes like transcription and translation. Based on these findings advanced studies can be defined to start the 2nd level of MoA characterisation, either with further phenotypic characterisation, starting a genetic screen or establishing a biochemical screen. At the 3rd level, enzyme assays or protein affinity studies should show the activity of the compound on the hypothesized target and should associate the in vitro effects with the in vivo profile of the compound.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this thesis is to investigate which contexts should be used for different kinds of note-taking and to study the evolution of the various types of note-taking. Moreover, the final aim of this thesis is to understand which method is used most commonly during the interpreting process, with a special focus on consecutive and community interpreting in the sector of public service and healthcare. The belief that stands behind this thesis is that the most complete method is Rozan’s, which is also the most theorized and used by interpreters. Through the analysis of the different rules of this practice, the importance of this method is shown. Moreover, the analysis demonstrates how these techniques can assist the interpreters in their jobs. This thesis starts from an overview of what note-taking means in the different settings of interpreting and a short history of note-taking is presented. The section that follows analyzes three different well-known types of note-taking methods outside the interpreting environment, that is: linear, non-linear and shorthand. Subsequent to the comparison, Rozan’s 7 principles are analyzed. To authenticate this thesis and the hypotheses herein, data was collected through a survey that was conducted on a sample of a group of graduated students in Linguistic and Intercultural Mediation at the University of Bologna “Scuola Superiore di Lingue Moderne per Interpreti e Traduttori”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aims at exploring listeners’ perception of disfluencies, i.e. ungrammatical pauses, filled pauses, repairs, false starts and repetitions, which can irritate listeners and impede comprehension. As professional communicators, conference interpreters should be competent public speakers. This means that their speech should be easily understood by listeners and not contain elements that may be considered irritating. The aim of this study was to understand to what extent listeners notice disfluencies and consider them irritating, and to examine whether there are differences between interpreters and non-interpreters and between different age groups. A survey was therefore carried out among professional interpreters, students of interpreting and people who regularly attend conferences. The respondents were asked to answer a questionnaire after listening to three speeches: three consecutive interpretations delivered during the final exams held at the Advanced School of Languages, Literature, Translation and Interpretation (SSLLTI) in Forlì. Since conference interpreters’ public speaking skills should be at least as good as those of the speakers at a conference, the speeches were presented to the listeners as speeches delivered during a conference, with no mention of interpreting being made. The study is divided into five chapters. Chapter I outlines the characteristics of the interpreter as a professional communicator. The quality criterion “user-friendliness” is explored, with a focus on features that make a speech more user-friendly: fluency, intonation, coherence and cohesion. The Chapter also focuses on listeners’ quality expectations and evaluations. In Chapter II the methodology of the study is described. Chapter III contains a detailed analysis of the texts used for the study, focusing on those elements that may irritate listeners or impede comprehension, namely disfluencies, the wrong use of intonation and a lack of coherence or cohesion. Chapter IV outlines the results of the survey, while Chapter V presents our conclusions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When particle flux is regulated by multiple factors such as particle supply and varying transport rate, it is important to identify the respective dominant regimes. We extend the well-studied totally asymmetric simple exclusion model to investigate the interplay between a controlled entrance and a local defect site. The model mimics cellular transport phenomena where there is typically a finite particle pool and nonuniform moving rates due to biochemical kinetics. Our simulations reveal regions where, despite an increasing particle supply, the current remains constant while particles redistribute in the system. Exploiting a domain wall approach with mean-field approximation, we provide a theoretical ground for our findings. The results in steady-state current and density profiles provide quantitative insights into the regulation of the transcription and translation process in bacterial protein synthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RNA localization is tightly coordinated with RNA stability and translation control. Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors are part of a Drosophila transport machinery that localizes mRNAs to specific cellular regions during oogenesis and embryogenesis. We identified the Poly(A)-binding protein (Pabp) as a protein that forms an RNA-dependent complex with Bic-D in embryos and ovaries. pabp also interacts genetically with Bic-D and, similar to Bic-D, pabp is essential in the germline for oocyte growth and accumulation of osk mRNA in the oocyte. In the absence of pabp, reduced stability of osk mRNA and possibly also defects in osk mRNA transport prevent normal oocyte localization of osk mRNA. pabp also interacts genetically with osk and lack of one copy of pabp(+) causes osk to become haploinsufficient. Moreover, pointing to a poly(A)-independent role, Pabp binds to A-rich sequences (ARS) in the osk 3'UTR and these turned out to be required in vivo for osk function during early oogenesis. This effect of pabp on osk mRNA is specific for this RNA and other tested mRNAs localizing to the oocyte are less and more indirectly affected by the lack of pabp

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to assess the clinical relevance of a slice-to-volume registration algorithm, this technique was compared to manual registration. Reformatted images obtained from a diagnostic CT examination of the lower abdomen were reviewed and manually registered by 41 individuals. The results were refined by the algorithm. Furthermore, a fully automatic registration of the single slices to the whole CT examination, without manual initialization, was also performed. The manual registration error for rotation and translation was found to be 2.7+/-2.8 degrees and 4.0+/-2.5 mm. The automated registration algorithm significantly reduced the registration error to 1.6+/-2.6 degrees and 1.3+/-1.6 mm (p = 0.01). In 3 of 41 (7.3%) registration cases, the automated registration algorithm failed completely. On average, the time required for manual registration was 213+/-197 s; automatic registration took 82+/-15 s. Registration was also performed without any human interaction. The resulting registration error of the algorithm without manual pre-registration was found to be 2.9+/-2.9 degrees and 1.1+/-0.2 mm. Here, a registration took 91+/-6 s, on average. Overall, the automated registration algorithm improved the accuracy of manual registration by 59% in rotation and 325% in translation. The absolute values are well within a clinically relevant range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosoma brucei is the causative agent of Human African Trypanosomiasis. Trypanosomes are early diverged protozoan parasites and show significant differences in their gene expression compared with higher eukaryotes. Due to a lack of individual gene promoters, large polycistronic transcripts are produced and individual mRNAs mature by trans-splicing and polyadenylation. In the absence of transcriptional control, regulation of gene expression occurs post-transcriptionally mainly by control of transcript stability and translation. Regulation of mRNA export from the nucleus to the cytoplasm might be an additional post-transcriptional event involved in gene regulation. However, our knowledge about mRNA export in trypanosomes is very limited. Although export factors of higher eukaryotes are reported to be conserved, only a few orthologues can be readily identified in the genome of T. brucei. Hence, biochemical approaches are needed to identify the export machinery of trypanosomes. Here, we report the functional characterization of the essential mRNA export factor TbMex67. TbMex67 contains a unique and essential N-terminal zinc finger motif. Furthermore, we could identify two interacting export factors namely TbMtr2 and the karyopherin TbIMP1. Our data show that the general heterodimeric export receptor Mex67-Mtr2 is conserved throughout the eukaryotic kingdom albeit exhibiting parasite-specific features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Animal replication-dependent histone mRNAs are subject to several post-transcriptional regulatory processes. Their non-polyadenylated 3' ends are formed preferentially during S phase by a unique nuclear cleavage event. This requires the base pairing between U7 snRNA and a histone spacer element 3' of the cleavage site. Cleavage occurs preferentially after adenosine, at a fixed distance from the hybrid region. A conserved RNA hairpin just upstream of the cleavage site is recognised by the hairpin binding protein (HBP) that acts as an auxiliary processing factor, stabilising the interaction of the histone pre-mRNA with the U7 snRNP. The interaction between HBP and the RNA hairpin is very stable and HBP is also found associated with histone mRNAs on polysomes. The hairpin and presumably, HBP are also required for nuclear export and translation of histone mRNA. Furthermore, histone mRNAs are selectively destabilised in the G2 phase or upon inhibition of DNA synthesis and this regulation is also associated with the hairpin. Recently, HBP-encoding cDNAs were isolated from various organisms. Human, mouse and Xenopus laevis HBPs are similar, while the Caenorhabditis elegans protein has significant homology to the others only in a central RNA binding domain.Copyright 1997 Academic Press Limited

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE The aim was to develop a delineation guideline for target definition for APBI or boost by consensus of the Breast Working Group of GEC-ESTRO. PROPOSED RECOMMENDATIONS Appropriate delineation of CTV (PTV) with low inter- and intra-observer variability in clinical practice is complex and needs various steps as: (1) Detailed knowledge of primary surgical procedure, of all details of pathology, as well as of preoperative imaging. (2) Definition of tumour localization before breast conserving surgery inside the breast and translation of this information in the postoperative CT imaging data set. (3) Calculation of the size of total safety margins. The size should be at least 2 cm. (4) Definition of the target. (5) Delineation of the target according to defined rules. CONCLUSION Providing guidelines based on the consensus of a group of experts should make it possible to achieve a reproducible and consistent definition of CTV (PTV) for Accelerated Partial Breast Irradiation (APBI) or boost irradiation after breast conserving closed cavity surgery, and helps to define it after selected cases of oncoplastic surgery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The proteasome degrades approximately 80% of intracellular proteins to maintain homeostasis. Proteasome inhibition is a validated therapeutic strategy, and currently, proteasome inhibitor bortezomib is FDA approved for the treatment of MM and MCL. Specific pathways affected by proteasome inhibition have been identified, but mechanisms of the anti-tumor effects of proteasome inhibition are not fully characterized and cancer cells display marked heterogeneity in terms of their sensitivity to proteasome inhibitor induced cell death. ^ The antitumor effects of proteasome inhibition involve suppression of tumor angiogenesis and vascular endothelial growth factor (VEGF) expression, but the mechanisms involved have not been clarified. In this dissertation I investigated the mechanisms underlying the effects of two proteasome inhibitors, bortezomib and NPI-0052, on VEGF expression in human prostate cancer cells. I found that proteasome inhibitors selectively downregulated hypoxia inducible factor 1alpha (HIF-1α) protein and its transcriptional activity to inhibit VEGF expression. Mechanistic studies demonstrated that proteasome inhibitors mediate the induction of the unfolded protein response (UPR) and that downregulation of HIF-1α is caused by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and translation repression. Importantly, I showed that proteasome inhibitors activated the UPR in some cells but not in others. My observation may have implications for the design of combination regimens that are based on exploiting proteasome inhibitor-induced ER stress.^ Although proteasome inhibitors have shown modest activity on prostate cancer, there is general consensus that no single agent is likely to have significant activity in prostate cancer. In the second part of this dissertation I attempted to exploit the effects of proteasome inhibition on the UPR to design a combination therapy that would enhance cancer cell death. Autophagy is a lysosome dependent degradation pathway that functions to eliminate long-lived protein and subcellular structures. Targeting autophagy has been shown to inhibit tumors in preclinical studies. I found that inhibition of autophagy with chloroquine or 3-methyladenine enhanced proteasome inhibitor induced cell death and the effects were associated with increased intracellular stress as marked by aggresome formation. Multiple cancers appear to be resistant to proteasome inhibition treatment alone. The implications of synergy for the combined inhibition of autophagy and the proteasome would likely apply to other cancers aside from prostate cancer. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.