797 resultados para Indium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Work Performed Under Contract No. AC02-77CH00178."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Prepared for the Office of Naval Research, under contract NONR-2542(00)."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using indium seals for large vacuum bell jars has been investigated. It is shown that such seals can be made; however, use of this type seal for repetitive operations is not recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contributions from the Chemical Laboratory of Harvard College."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin layers of indium tin oxide are widely used as transparent coatings and electrodes in solar energy cells, flat-panel displays, antireflection coatings, radiation protection and lithium-ion battery materials, because they have the characteristics of low resistivity, strong absorption at ultraviolet wavelengths, high transmission in the visible, high reflectivity in the far-infrared and strong attenuation in the microwave region. However, there is often a trade-off between electrical conductivity and transparency at visible wavelengths for indium tin oxide and other transparent conducting oxides. Here, we report the growth of layers of indium tin oxide nanowires that show optimum electronic and photonic properties and demonstrate their use as fully transparent top contacts in the visible to near-infrared region for light-emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts to push the performance of transistors for millimeter-wave and microwave applications have borne fruit through device size scaling and the use of novel material systems. III-V semiconductors and their alloys hold a distinct advantage over silicon because they have much higher electron mobility which is a prerequisite for high frequency operation. InGaAs/InP pseudomorphic heterojunction bipolar transistors (HBTs) have demonstrated fT of 765 GHz at room temperature and InP based high electron mobility transistors (HEMTs) have demonstrated fMax of 1.2 THz. The 6.1 A lattice family of InAs, GaSb, AlSb covers a wide variety of band gaps and is an attractive future material system for high speed device development. Extremely high electron mobilities ~ 30,000 cm^2 V^-1s^-1 have been achieved in modulation doped InAs-AlSb structures. The work described in this thesis involves material characterization and process development for HEMT fabrication on this material system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique rema1ns inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system 1s installed along with a tunable dye laser, which provides resonant excitation. Donors 1n high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions 1n a high magnetic field and at liquid helium temperature. This technique 1s successfully used to identify donors 1n n-type GaAs as well as 1n p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (3ll)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) 1s investigated using photoluminescence. Si acceptors ~n MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor ~n high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of far infrared (FIR) dielectric response of shallow impurity states in a semiconductor has been developed and is presented for the specific case of the shallow donor transitions in high purity epitaxial GaAs. The model is quite general, however, and should be applicable with slight modification, not only to shallow donors in other materials such as InP, but also to shallow acceptors and excitons. The effects of the enormous dielectric response of shallow donors on the FIR optical properties of reflectance, transmittance, and absorptance, and photoconductive response of high purity epitaxial GaAs films are predicted and compared with experimental photothermal ionization spectra. The model accounts for many of the peculiar features that are frequently observed in these spectra, one of which was the cause of erroneous donor identifications in the early doping experiments. The model also corrects some commonly held misconceptions concerning photo-thermal ionization peak widths and amplitudes and their relationships to donor and acceptor concentrations. These corrections are of particular relevance to the proper interpretation of photothermal ionization spectra in the study of impurity incorporation in high purity epitaxial material. The model also suggests that the technique of FIR reflectance, although it has not been widely employed, should be useful in the study of shallow impurities in semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On treatment with indium metal in MeOH–THF, trityl groups undergo reductive removal from 1H-protected tetrazoles (including aliphatic, aromatic, and heteroaromatic substituents), affording the corresponding free tetrazoles in excellent yields, without any decomposition of the tetrazole ring or reduction of any other group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of size-monodispersed indium nanoparticles via an innovative simultaneous phase transfer and ripening method is reported. The formation of nanoparticles occurs in a one-step process instead of well-known two-step phase transfer approaches. The synthesis involves the reduction of InCl3 with LiBH4 at ambient temperature and although the reduction occurs at room temperature, fine indium nanoparticles, with a mean diameter of 6.4 ± 0.4 nm, were obtained directly in non-polar n-dodecane. The direct synthesis of indium nanoparticles in n-dodecane facilitates their fast formation and enhances their size-monodispersity. In addition, the nanoparticles were highly stable for more than 2 months. The nanoparticles were characterised by dynamic light scattering (DLS), small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy to determine their morphology, structure and phase purity.