543 resultados para Hydrogel
Resumo:
Introduction: Lower back pain treatment and compensation costs >$80 billion overall in the US. 75% of back pain is due to disc degeneration in the lumbar region of the spine. Current treatment comprises of painkillers and bed rest or as a more radical solution – interbody cage fusion. In the early stages of disc degeneration the patient would benefit from addition of an injectable gel which polymerises in situ to support the degenerated nucleus pulposus. This involves a material which is an analogue of the natural tissue capable of restoring the biomechanical properties of the natural disc. The nucleus pulposus of the intervertebral disc is an example of a natural proteoglycan consisting of a protein core with negatively charged keratin and chondroitin sulphate attached. As a result of the high fixed charge density of the proteoglycan, the matrix exerts an osmotic swelling pressure drawing sufficient water into support the spinal system. Materials and Methods: NaAMPs (sodium 2- acrylamido 2-methyl propane sulphonic acid) and KSPA (potassium 3- sulphopropyl acrylate) were selected as monomers, the sulphonate group being used to mimic the natural sulphate group. These are used in dermal applications involving chronic wounds and have acceptably low cytotoxicity. Other hydrophilic carboxyl, amide and hydroxyl monomers such as 2-hydroxyethyl acrylamide, ß-carboxyethyl acrylate, acryloyl morpholine, and polyethylene glycol (meth)acrylate were used as diluents together with polyethyleneglycol di(meth)acrylate and hydrophilic multifunctional macromers as cross-linker. Redox was the chosen method of polymerisation and a range of initiators were investigated. Components were packaged in two solutions each containing a redox pair. A dual syringe method of injection into the cavity was used, the required time for polymerisation is circa 3-7 minutes. The final materials were tested using a Bohlin CVO Rheometer cycling from 0.5-25Hz at 37oC to measure the modulus. An in-house compression testing method was developed, using dialysis tubing to mimic the cavity, the gels were swelled in solutions of various osmolarity and compressed to ~ 20%. The pre-gel has also been injected into sheep spinal segments for mechanical compression testing to demonstrate the restoration of properties upon use of the gel. Results and Discussion: Two systems resulted using similar monomer compositions but different initiation and crosslinking agents. NaAMPs and KSPA were used together at a ratio of ~1:1 in both systems with 0.25-2% crosslinking agent, diacrylate or methacrylate. The two initiation systems were ascorbic acid/oxone, and N,N,N,N - tetramethylethylenediamine (TEMED)/ potassium persulphate. These systems produced gelation within 3-7 and 3-5 minutes respectively. Storage of the two component systems was shown to be stable for approximately one month after mixing, in the dark, refrigerated at 1-4oC. The gelation was carried out at 37oC. Literature values for the natural disc give elastic constants ranging from 3-8kPa. The properties of the polymer can be tailored by altering crosslink density and monomer composition and are able to match those of the natural disc. It is possible to incorporate a radio-opaque (histodenz) to enable x-ray luminescence during and after injection. At an inclusion level of 5% the gel is clearly visible and polymerisation and mechanical properties are not altered. Conclusion: A two-pac injection system which will polymerise in situ, that can incorporate a radio-opaque, has been developed. This will reinforce the damaged nucleus pulposus in degenerative disc disease restoring adequate hydration and thus biomechanical properties. Tests on sheep spine segments are currently being carried out to demonstrate that a disc containing the gel has similar properties to an intact disc in comparison to one with a damaged nucleus.
Resumo:
In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.
Resumo:
Since the initial launch of silicone hydrogel lenses, there has been a considerable broadening in the range of available commercial material properties. The very mobile silicon–oxygen bonds convey distinctive surface and mechanical properties on silicone hydrogels, in which advantages of enhanced oxygen permeability, reduced protein deposition, and modest frictional interaction are balanced by increased lipid and elastic response. There are now some 15 silicone hydrogel material variants available to practitioners; arguably, the changes that have taken place have been strongly influenced by feedback based on clinical experience. Water content is one of the most influential properties, and the decade has seen a progressive rise from lotrafilcon-A (24%) to efrofilcon-A (74%). Moduli have decreased over the same period from 1.4 to 0.3 MPa, but not solely as a result of changes in water content. Surface properties do not correlate directly with water content, and ingenious approaches have been used to achieve desirable improvements (e.g., greater lubricity and lower contact angle hysteresis). This is demonstrated by comparing the hysteresis value of the earliest (lotrafilcon-A, >40°) and most recent (delefilcon-A, <10°) coated silicone hydrogels. Although wettability is important, it is not of itself a good predictor of ocular response because this involves a much wider range of physicochemical and biochemical factors. The interference of the lens with ocular dynamics is complex leading separately to tissue–material interactions involving anterior and posterior lens surfaces. The biochemical consequences of these interactions may hold the key to a greater understanding of ocular incompatibility and end of day discomfort.
Resumo:
Purpose: to evaluate changes in tear metrics and ocular signs induced by six months of silicone-hydrogel contact lens wear and the difference in baseline characteristics between those who successfully continued in contact lens wear compared to those that did not. Methods: Non-invasive Keratograph, Tearscope and fluorescein tear break-up times (TBUTs), tear meniscus height, bulbar and limbal hyperaemia, lid-parallel conjunctival folds (LIPCOF), phenol red thread, fluorescein and lissamine-green staining, and lid wiper epitheliopathy were measured on 60 new contact lens wearers fitted with monthly silicone-hydrogels (average age 36 ± 14 years, 40 females). Symptoms were evaluated by the Ocular Surface Disease Index (OSDI). After six months full time contact lens wear the above metrics were re-measured on those patients still in contact lens wear (n= 33). The initial measurements were also compared between the group still wearing lenses after six months and those who had ceased lens wear (n= 27). Results: There were significant changes in tear meniscus height (p= 0.031), bulbar hyperaemia (p= 0.011), fluorescein TBUT (p= 0.027), corneal (p= 0.007) and conjunctival (p= 0.009) staining, LIPCOF (p= 0.011) and lid wiper epitheliopathy (p= 0.002) after six months of silicone-hydrogel wear. Successful wearers had a higher non-invasive (17.0 ± 8.2. s vs 12.0 ± 5.6. s; p= 0.001) and fluorescein (10.7 ± 6.4. s vs 7.5 ± 4.7. s; p= 0.001) TBUT than drop-outs, although OSDI (cut-off 4.2) was also a strong predictor of success. Conclusion: Silicone-hydrogel lenses induced significant changes in the tear film and ocular surface as well as lid margin staining. Wettability of the ocular surface is the main factor affecting contact lens drop-out. © 2013 British Contact Lens Association.
Resumo:
Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single-walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water-soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo-UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.
Resumo:
PURPOSE. To report differences in the incidence of adverse events and discontinuations found in a group of neophyte contact wearers using two different silicone hydrogel contact lenses on a daily- and continuous-wear basis during an 18-month period. METHODS. Sixty-one subjects were initially examined, and 53 were eligible to participate in the study. Eligible subjects were randomly assigned to wear one of two silicone hydrogel materials: lotrafilcon A or balafilcon A lenses on a daily- or continuous-wear basis. After an initial screening, subjects were monitored weekly for the first month and then after 3, 6, 12, and 18 months. The incidence of adverse events, including corneal infiltrative events, superior epithelial arcuate lesions, and contact lens-induced papillary conjunctivitis, and discontinuations in each of the four contact lens groups were recorded. RESULTS. Twenty-two adverse events were found. A higher incidence of adverse events was found in subjects wearing lotrafilcon A lenses than in those wearing balafilcon A lenses (χ = 4.40, P=0.04). There were fewer adverse events in subjects wearing lenses on a daily-wear basis than in those wearing lenses on a continuous-wear basis (χ = 5.98, P=0.01). Eight subjects discontinued from the study as a result of recurrent corneal infiltrative events (one), vision problems (two), excessive ocular discomfort (one), relocation (one), noncompliance with the study protocol (one), and being lost to follow-up (two). No significant differences were found in the number of discontinuations between the two lens types (χ = 0.66, P=0.42) and wearing regimens (χ = 0.08, P=0.78). CONCLUSIONS. Lotrafilcon A lenses were associated with a higher incidence of adverse events than balafilcon A lenses were, and this difference is attributed to the difference in the incidence of corneal infiltrative events. Subjects wearing lenses on a daily-wear basis had fewer adverse events than did subjects wearing lenses on a continuous-wear basis. Both lens types and wearing regimens showed a similar incidence of discontinuations. © 2007 Lippincott Williams & Wilkins, Inc.
Resumo:
Purpose. The purpose of this study was to evaluate the longitudinal changes in ocular physiology, tear film characteristics, and symptomatology experienced by neophyte silicone hydrogel (SiH) contact lens wearers in a daily-wear compared with a continuous-wear modality and with the different commercially available lenses over an 18-month period. Methods. Forty-five neophyte subjects were enrolled in the study and randomly assigned to wear one of two SiH materials: lotrafilcon A or balafilcon A lenses on either a daily- (LDW; BDW) or continuous-wear (LCW; BCW) basis. Additionally, a group of noncontact lens-wearing subjects (control group) was also recruited and followed over the same study period. Objective and subjective grading of ocular physiology were carried out together with tear meniscus height (TMH) and noninvasive tear breakup time (NITBUT). Subjects also subjectively rated symptoms and judgments with lens wear. After initial screening, subsequent measurements were taken after 1, 3, 6, 12, and 18 months. Results. Subjective and objective grading of ocular physiology revealed a small increase in bulbar, limbal, and palpebral hyperemia as well as corneal staining over time with both lens materials and regimes of wear (p < 0.05). No significant changes in NITBUT or TMH were found (p > 0.05). Subjective symptoms and judgment were not material- or modality-specific. Conclusions. Daily and continuous wear of SiH contact lenses induced small but statistically significant changes in ocular physiology and symptomatology. Clinical measures of tear film characteristics were unaffected by lens wear. Both materials and regimes of wear showed similar clinical performance. Long-term SiH contact lens wear is shown to be a successful option for patients. Copyright © 2006 American Academy of Optometry.
Resumo:
Purpose. This study reports data from an 18-month longitudinal study of neophyte contact lens wearers and compares changes in ocular refraction and biometry induced by daily wear and continuous wear of two different silicone hydrogel (SiH) materials. Methods. Forty-five subjects were enrolled in the study and randomly assigned to wear one of the two silicone hydrogel materials: Lotrafilcon A or Balafilcon A lenses on either a daily or continuous wear basis. Measurements of objective refraction, axial length, anterior chamber depth, corneal curvature, and the rate of peripheral corneal flattening were performed before and 1, 3, 6, 12, and 18 months after initial fitting. Results. Mean spherical equivalent refractive error increased in the myopic direction in all contact lens groups across time (p < 0.001). Axial length was the main biometric contributor to the development of myopia. After 18 months of lens wear, subjects in the Lotrafilcon A group showed the greater mean increase in myopia (i.e., -0.50 D). Conclusions. The results of this study show that increases in myopia, similar if not higher than those found to occur normally in young adult noncontact lens wearers, still occur with silicone hydrogel contact lens wear. The main biometric contributor to the progression of myopia was an increase in axial length. Differences between our results and those of previous studies with silicone hydrogel contact lenses could be attributed to the differing populations used in which both age and occupation may have played a role. Copyright © 2005 American Academy of Optometry.
Resumo:
This paper focuses on the effects of wear regime on the deposition pattern of important immunoregulatory proteins on FDA Group IV etafilcon-A lenses. Specifically, the aim was to assess the extent to which the daily disposable wear modality produces a different deposition of proteins from the conventional daily wear regime which is coupled with cleaning and disinfection. Counter immunoelectrophoresis (CIE) was employed to detect individual proteins in lens extracts from individual patients and focused on the analysis of five proteins, IgA, IgG, lactoferrin, albumin and kininogen. Deposition was monitored as a function of time; significantly lower deposition was detected on the daily disposable lenses. cr 2002 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose: To quantify the end-of-day silicone-hydrogel daily disposable contact lens fit and its influence of on ocular comfort, physiology and lens wettability. Methods: Thirty-nine subjects (22.1. ±. 3.5 years) were randomised to wear each of 3 silicone-hydrogel daily-disposable contact lenses (narafilcon A, delefilcon A and filcon II 3), bilaterally, for one week. Lens fit was assessed objectively using a digital video slit-lamp at 8, 12 and 16. h after lens insertion. Hyperaemia, non-invasive tear break-up time, tear meniscus height and comfort were also evaluated at these timepoints, while corneal and conjunctival staining were assessed on lens removal. Results: Lens fit assessments were not different between brands (P > 0.05), with the exception of the movement at blink where narafilcon A was more mobile. Overall, lag reduced but push-up speed increased from 8 to 12. h (P <. 0.05), but remained stable from 12 to 16. h (P > 0.05). Movement-on-blink was unaffected by wear-time (F = 0.403, P = 0.670). A more mobile lens fit with one brand did not indicate that person would have a more mobile fit with another brand (r = -0.06 to 0.63). Lens fit was not correlated with comfort, ocular physiology or lens wettability (P > 0.01). Conclusions: Among the lenses tested, objective lens fit changed between 8. h and 12. h of lens wear. The weak correlation in individual lens fit between brands indicates that fit is dependent on more than ocular shape. Consequently, substitution of a different lens brand with similar parameters will not necessarily provide comparable lens fit.
Resumo:
PURPOSE: To assess the performance of four commercially available silicone hydrogel multifocal monthly contact lens designs against monovision. METHODS: A double-masked randomized crossover trial of Air Optix Aqua multifocal, PureVision 2 for Presbyopia, Acuvue OASYS for Presbyopia, Biofinity multifocal, and monovision with Biofinity contact lenses was conducted on 35 presbyopes (54.3 ± 6.2 years). After 4 weeks of wear, visual performance was quantified by high- and low-contrast visual acuity under photopic and mesopic conditions, reading speed, defocus curves, stereopsis, halometry, aberrometry, Near Activity Visual Questionnaire rating, and subjective quality of vision scoring. Bulbar, limbal, and palpebral hyperemia and corneal staining were graded to monitor the impact of each contact lens on ocular physiology. RESULTS: High-contrast photopic visual acuity (p = 0.102), reading speed (F = 1.082, p = 0.368), and aberrometry (F = 0.855, p = 0.493) were not significantly different between presbyopic lens options. Defocus curve profiles (p <0.001), stereopsis (p <0.001), halometry (F = 4.101, p = 0.004), Near Activity Visual Questionnaire (F = 3.730, p = 0.007), quality of vision (p = 0.002), bulbar hyperemia (p = 0.020), and palpebral hyperemia (p = 0.012) differed significantly between lens types, with the Biofinity multifocal lens design principal (center-distance lens was fitted to the dominant eye and a center-near lens to the nondominant eye) typically outperforming the other lenses. CONCLUSIONS: Although ocular aberration variation between individuals largely masks the differences in optics between current multifocal contact lens designs, certain design strategies can outperform monovision, even in early presbyopes.
Resumo:
PURPOSE: To assess the surface tear breakup time and clinical performance of three daily disposable silicone hydrogel contact lenses over 16 hours of wear. METHODS: Thirty-nine patients (mean [±SD] age, 22.1 [±3.5] years) bilaterally wore (narafilcon A, filcon II-3, and delefilcon A) contact lenses in a prospective, randomized, masked, 1-week crossover clinical trial. Tear film was assessed by the tear meniscus height (TMH), ocular/contact lens surface temperature dynamics, and lens surface noninvasive breakup time at 8, 12, and 16 hours of wear. Clinical performance and ocular physiology were assessed by subjective questionnaire, by high-/low-contrast logMAR (logarithm of the minimum angle of resolution) acuity, and through bulbar and limbal hyperemia grading. Corneal and conjunctival staining were assessed after lens removal. RESULTS: Delefilcon A demonstrated a longer noninvasive breakup time (13.4 [±4.4] seconds) than filcon II-3 (11.6 [±3.7] seconds; p < 0.001) and narafilcon A (12.3 [±3.7] seconds; p < 0.001). A greater TMH (0.35 [±0.11] mm) was shown by delefilcon A than filcon II-3 (0.32 [±0.10] seconds; p = 0.016). Delefilcon A showed less corneal staining after 16 hours of lens wear (0.7 [±0.6] Efron grade) than filcon II-3 (1.1 [±0.7]; p < 0.001) and narafilcon A (0.9 [±0.7]; p = 0.031). Time was not a significant factor for prelens tear film stability (F = 0.594, p = 0.555) or TMH (F = 0.632, p = 0.534). Lens brand did not affect temperature (F = 1.220, p = 0.308), but it decreased toward the end of the day (F = 19.497, p < 0.001). Comfort, quality of vision, visual acuity and contrast acuity, and limbal grading were similar between the lens brands but decreased with time during the day (p < 0.05). CONCLUSIONS: The tear breakup time over the contact lens surface differed between lens types and may have a role in protecting the ocular surface.
Resumo:
Myocardial cell transplantation can compensate for the loss of necrotic cardiomyocytes. The objective of this research study was to reformulate the hydrogel with concentrations of growth factors, such as Leukemia Inhibitory Factor (LIF), Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL-6). A controlled delivery system of PEO-PPO-PEO was formulated for release of a single growth factor and of multiple growth factors. Cytotoxicity and proliferation assay for single growth factors starting with 4000 skeletal myoblasts yielded their highest proliferation at 4 days with HGF (25,500 cells) and LIF (42,000 cells), while IL-6 (115,000 cells) generated its highest proliferation at 5 days. Combination of LIF and IL-6 resulted in highest proliferation at day 2 (220,000 cells), HGF and LIF (108,000 cells), and HGF and IL-6 (80,000 cells) both at 5 days. Viability at 37°C was maintained during the five days at 98-99%. The formulation was successful in myotube formation while maintaining a high purity of myoblasts in culture. The new formulation induced controlled release of growth factors and skeletal myoblasts delivery under favorable conditions while increasing the proliferation of myoblasts.
Resumo:
Smart hydrogels for biomedical applications are highly researched materials. However, integrating them into a device for implantation is difficult. This paper investigates an integrated delivery device designed to deliver an electro-responsive hydrogel to a target location inside a blood vessel with the purpose of creating an occlusion. The paper describes the synthesis and characterization of a Pluronic/methacrylic acid sodium salt electro-responsive hydrogel. Application of an electrical bias decelerates the expansion of the hydrogel. An integrated delivery system was manufactured to deliver the hydrogel to the target location in the body. Ex vivo and in vivo experiments in the carotid artery of sheep were used to validate the concept. The hydrogel was able to completely occlude the blood vessel reducing the blood flow from 245 to 0 ml/min after implantation. Ex vivo experiments showed that the hydrogel was able to withstand physiological blood pressures of > 270 mm·Hg without dislodgement. The results showed that the electro-responsive hydrogel used in this paper can be used to create a long-term occlusion in a blood vessel without any apparent side effects. The delivery system developed is a promising device for the delivery of electro-responsive hydrogels.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.