874 resultados para Hip to Shoulder Differential
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thermogravimetry (TG) up to 900°C, differential thermal analysis (DTA) up to 1100°C and gravimetric data up to 1200°C, have been used to study the thermal decomposition of ammonium selenate and of the double selenates of lanthanides, and yttrium, and ammonium. The results provided the composition and thermal stability and also an interpretation of the thermal decomposition mechanisms. © 1994.
Resumo:
Background: To establish the best methodology for diagnosis and management of patients with solid and complex renal masses by comparing the costs and benefits of different imaging methods and to improve differential diagnosis of these benign and malignant lesions, particularly by investigating tumour calcifications. Methods: We performed a prospective study on 31 patients with solid or complex masses by submitting them to Abdominal Ultrasonography (US), Doppler Ultrasonography of the renal mass (US Dop), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Results: We found 28 patients with malignant and three with benign masses. Of the 28 malignant, 17 showed calcifications at CT; 16 central and one was of the pure peripheral curvilinear type (egg shell). Excretory Urography (IVP) had a significantly lower detection rate for central calcifications than both US and CT. Benign and malignant masses appeared as described in literature, with US, CT and MRI showing high sensitivity and specificity in renal tumor diagnosis. The exception was US Dop where we obtained lower sensitivity for the characterization of malignant tumor flow. Conclusions: In this series we were surprised to find that CT revealed central calcifications in 51.6% of patients, all with malignant lesions, while, literature reports a frequency of calcification in renal cell carcinoma between 8 and 22%, in studies using abdominal films and EU (IVP). This finding is of great importance when we consider that these calcifications occur particularly in malignant neoplasms. As a result of comparing these different imaging methods we have developed a better methodology for renal tumor investigation.
Resumo:
With the advance of mathematical methods throughout the centuries, in particular with respect to the differential calculus, the notion of fractional derivative emerged with Leibniz and later developed by several well known scientists. Today that formalism is well used in the study of diffusion phenomena among other areas. We extend the fractional indices to matricial indices and develop a formalism to handle this generalized derivative, as well as other operators, functions and functionals in mathematical physics, originally defined for natural indices. Here we only consider 2x2 hermitian and anti-hermitian matrices. These matrices are associated to the well known Pauli matrices and Hamilton's quaternions. Applications with mathematical physics functions are presented
Resumo:
Pós-graduação em Física - FEG
Resumo:
We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.
Resumo:
In this paper we present two studies, the first one completed and the second one in development, which are based in teaching approaches that propose the qualitative study of mathematical models as a strategy for the teaching and learning of mathematical concepts. These teaching approaches focus on subjects from Higher Education such as Introduction to Ordinary Differential Equations and Topics of Differential and Integral Calculus. We denominate this common aspect of the teaching approaches as Model Analysis and in a preliminary level we relate it with Mathematical Modeling. Furthermore, we discuss some questions related with the choice of the theme and the role of Digital Technologies when Model Analysis is applied.
Resumo:
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene a-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation.
Resumo:
Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
Resumo:
Herbivore-attacked plants produce specific volatile substances that represent important cues for host finding by natural enemies. The fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a voracious herbivore and usually feed on maize in all periods of the day. Given that plant needs light to synthesize de novo herbivore-induced volatiles, volatile blend may be changed depending on time of the day the plant is induced, what could interfere in natural enemy foraging. In this sense, the current study aimed to investigate differential attractiveness of maize elicited by fall armyworm regurgitant under light and dark conditions to its specialist larval parasitoid Campoletis flavicincta (Ashmead) (Hymenoptera: Ichneumonidae). All bioassays were conducted in Y-tube olfactometer to assess parasitoid response to odors from undamaged maize, mechanical damage, and regurgitant-treated plants at 0-1, 5-6, and 24-25 h after induction. The results showed that na < ve wasps were attracted to volatiles emitted by nocturnal regurgitant-treated maize at 5-6 h, but not to odors from diurnal regurgitant-treated plants. The differential attractiveness is likely due to blend composition as nocturnal regurgitant-treated plants emit aromatic compounds and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene in larger amounts than diurnal-treated plants.
Resumo:
The rainforest of Mexico has been degraded and severely fragmented, and urgently require restoration. However, the practice of restoration has been limited by the lack of species-specific data on survival and growth responses to local environmental variation. This study explores the differential performance of 14 wet tropical early-, mid- or late-successional tree species that were grown in two abandoned pastures with contrasting land-use histories. After 18 months, seedling survival and growth of at least 7 of the 14 tree species studied were significantly higher in the site with a much longer history of land use (site 2). Saplings of the three early-successional species showed exceptional growth rates. However, differences in performance were noted in relation to the differential soil properties between the experimental sites. Mid-successional species generally showed slow growth rates but high seedling survival, whereas late-successional species exhibited poor seedling survival at both the study sites. Stepwise linear regressions revealed that the species integrated response index combining survivorship and growth measurements, was influenced mostly by differences in soil pH between the two abandoned pastures. Our results suggest that local environmental variation among abandoned pastures of contrasting land-use histories influences sapling survival and growth. Furthermore, the similarity of responses among species with the same successional status allowed us to make some preliminary site and species-specific silvicultural recommendations. Future field experiments should extend the number of species and the range of environmental conditions to identify site generalists or more narrowly adapted species, that we would call sensitive.
Resumo:
Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Although the molecular pathogenesis of pituitary adenomas has been assessed by several different techniques, it still remains partially unclear. Ribosomal proteins (RPs) have been recently related to human tumorigenesis, but they have not yet been evaluated in pituitary tumorigenesis. Objective: The aim of this study was to introduce serial analysis of gene expression (SAGE), a high-throughput method, in pituitary research in order to compare differential gene expression. Methods: Two SAGE cDNA libraries were constructed, one using a pool of mRNA obtained from five GH-secreting pituitary tumors and another from three normal pituitaries. Genes differentially expressed between the libraries were further validated by real-time PCR in 22 GH-secreting pituitary tumors and in 15 normal pituitaries. Results: Computer-generated genomic analysis tools identified 13 722 and 14 993 exclusive genes in normal and adenoma libraries respectively. Both shared 6497 genes, 2188 were underexpressed and 4309 overexpressed in tumoral library. In adenoma library, 33 genes encoding RPs were underexpressed. Among these, RPSA, RPS3, RPS14, and RPS29 were validated by real-time PCR. Conclusion: We report the first SAGE library from normal pituitary tissue and GH-secreting pituitary tumor, which provide quantitative assessment of cellular transcriptome. We also validated some downregulated genes encoding RPs. Altogether, the present data suggest that the underexpression of the studied RP genes possibly collaborates directly or indirectly with other genes to modify cell cycle arrest, DNA repair, and apoptosis, leading to an environment that might have a putative role in the tumorigenesis, introducing new perspectives for further studies on molecular genesis of somatotrophinomas.
Resumo:
In a global and increasingly competitive fresh produce market, more attention is being given to fruit quality traits and consumer satisfaction. Kiwifruit occupies a niche position in the worldwide market, when compared to apples, oranges or bananas. It is a fruit with extraordinarily good nutritional traits, and its benefits to human health have been widely described. Until recently, international trade in kiwifruit was restricted to a single cultivar, but different types of kiwifruit are now becoming available in the market. Effective programmes of kiwifruit improvement start by considering the requirements of consumers, and recent surveys indicate that sweeter fruit with better flavour are generally preferred. There is a strong correlation between at-harvest dry matter and starch content, and soluble solid concentration and flavour when fruit are eating ripe. This suggests that carbon accumulation strongly influences the development of kiwifruit taste. The overall aim of the present study was to determine what factors affect carbon accumulation during Actinidia deliciosa berry development. One way of doing this is by comparing kiwifruit genotypes that differ greatly in their ability to accumulate dry matter in their fruit. Starch is the major component of dry matter content. It was hypothesized that genotypes were different in sink strength. Sink strength, by definition, is the effect of sink size and sink activity. Chapter 1 reviews fruit growth, kiwifruit growth and development and carbon metabolism. Chapter 2 describes the materials and methods used. Chapter 3, 4, 5 and 6 describes different types of experimental work. Chapter 7 contains the final discussions and the conclusions Three Actinidia deliciosa breeding populations were analysed in detail to confirm that observed differences in dry matter content were genetically determined. Fruit of the different genotypes differed in dry matter content mainly because of differences in starch concentrations and dry weight accumulation rates, irrespective of fruit size. More detailed experiments were therefore carried out on genotypes which varied most in fruit starch concentrations to determine why sink strengths were so different. The kiwifruit berry comprises three tissues which differ in dry matter content. It was initially hypothesised that observed differences in starch content could be due to a larger proportion of one or other of these tissues, for example, of the central core which is highest in dry matter content. The study results showed that this was not the case. Sink size, intended as cell number or cell size, was then investigated. The outer pericarp makes up about 60% of berry weight in ‘Hayward’ kiwifruit. The outer pericarp contains two types of parenchyma cells: large cells with low starch concentration, and small cells with high starch concentration. Large cell, small cell and total cell densities in the outer pericarp were shown to be not correlated with either dry matter content or fruit size but further investigation of volume proportion among cell types seemed justified. It was then shown that genotypes with fruit having higher dry matter contents also had a higher proportion of small cells. However, the higher proportion of small cell volume could only explain half of the observed differences in starch content. So, sink activity, intended as sucrose to starch metabolism, was investigated. In transiently starch storing sinks, such as tomato fruit and potato tubers, a pivotal role in carbon metabolism has been attributed to sucrose cleaving enzymes (mainly sucrose synthase and cell wall invertase) and to ADP-glucose pyrophosphorylase (the committed step in starch synthesis). Studies on tomato and potato genotypes differing in starch content or in final fruit soluble solid concentrations have demonstrated a strong link with either sucrose synthase or ADP-glucose pyrophosphorylase, at both enzyme activity and gene expression levels, depending on the case. Little is known about sucrose cleaving enzyme and ADP-glucose pyrophosphorylase isoforms. The HortResearch Actinidia EST database was then screened to identify sequences putatively encoding for sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoforms and specific primers were designed. Sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoform transcript levels were anlayzed throughout fruit development of a selection of four genotypes (two high dry matter and two low dry matter). High dry matter genotypes showed higher amounts of sucrose synthase transcripts (SUS1, SUS2 or both) and higher ADP-glucose pyrophosphorylase (AGPL4, large subunit 4) gene expression, mainly early in fruit development. SUS1- like gene expression has been linked with starch biosynthesis in several crop (tomato, potato and maize). An enhancement of its transcript level early in fruit development of high dry matter genotypes means that more activated glucose (UDP-glucose) is available for starch synthesis. This can be then correlated to the higher starch observed since soon after the onset of net starch accumulation. The higher expression level of AGPL4 observed in high dry matter genotypes suggests an involvement of this subunit in drive carbon flux into starch. Changes in both enzymes (SUSY and AGPse) are then responsible of higher starch concentrations. Low dry matter genotypes showed generally higher vacuolar invertase gene expression (and also enzyme activity), early in fruit development. This alternative cleavage strategy can possibly contribute to energy loss, in that invertases’ products are not adenylated, and further reactions and transport are needed to convert carbon into starch. Although these elements match well with observed differences in starch contents, other factors could be involved in carbon metabolism control. From the microarray experiment, in fact, several kinases and transcription factors have been found to be differentially expressed. Sink strength is known to be modified by application of regulators. In ‘Hayward’ kiwifruit, the synthetic cytokinin CPPU (N-(2-Chloro-4-Pyridyl)-N-Phenylurea) promotes a dramatic increase in fruit size, whereas dry matter content decreases. The behaviour of CPPU-treated ‘Hayward’ kiwifruit was similar to that of fruit from low dry matter genotypes: dry matter and starch concentrations were lower. However, the CPPU effect was strongly source limited, whereas in genotype variation it was not. Moreover, CPPU-treated fruit gene expression (at sucrose cleavage and AGPase levels) was similar to that in high dry matter genotypes. It was therefore concluded that CPPU promotes both sink size and sink activity, but at different “speeds” and this ends in the observed decrease in dry matter content and starch concentration. The lower “speed” in sink activity is probably due to a differential partitioning of activated glucose between starch storage and cell wall synthesis to sustain cell expansion. Starch is the main carbohydrate accumulated in growing Actinidia deliciosa fruit. Results obtained in the present study suggest that sucrose synthase and AGPase enzymes contribute to sucrose to starch conversion, and differences in their gene expression levels, mainly early in fruit development, strongly affect the rate at which starch is therefore accumulated. This results are interesting in that starch and Actinidia deliciosa fruit quality are tightly connected.
Resumo:
Satellite SAR (Synthetic Aperture Radar) interferometry represents a valid technique for digital elevation models (DEM) generation, providing metric accuracy even without ancillary data of good quality. Depending on the situations the interferometric phase could be interpreted both as topography and as a displacement eventually occurred between the two acquisitions. Once that these two components have been separated it is possible to produce a DEM from the first one or a displacement map from the second one. InSAR DEM (Digital Elevation Model) generation in the cryosphere is not a straightforward operation because almost every interferometric pair contains also a displacement component, which, even if small, when interpreted as topography during the phase to height conversion step could introduce huge errors in the final product. Considering a glacier, assuming the linearity of its velocity flux, it is therefore necessary to differentiate at least two pairs in order to isolate the topographic residue only. In case of an ice shelf the displacement component in the interferometric phase is determined not only by the flux of the glacier but also by the different heights of the two tides. As a matter of fact even if the two scenes of the interferometric pair are acquired at the same time of the day only the main terms of the tide disappear in the interferogram, while the other ones, smaller, do not elide themselves completely and so correspond to displacement fringes. Allowing for the availability of tidal gauges (or as an alternative of an accurate tidal model) it is possible to calculate a tidal correction to be applied to the differential interferogram. It is important to be aware that the tidal correction is applicable only knowing the position of the grounding line, which is often a controversial matter. In this thesis it is described the methodology applied for the generation of the DEM of the Drygalski ice tongue in Northern Victoria Land, Antarctica. The displacement has been determined both in an interferometric way and considering the coregistration offsets of the two scenes. A particular attention has been devoted to investigate the importance of the role of some parameters, such as timing annotations and orbits reliability. Results have been validated in a GIS environment by comparison with GPS displacement vectors (displacement map and InSAR DEM) and ICEsat GLAS points (InSAR DEM).