928 resultados para Health Sciences, Nursing|Psychology, Psychometrics|Health Sciences, Oncology
Resumo:
4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^
Resumo:
Racial disparities in prostate cancer are of public health concern. This dissertation used Texas Cancer Registry data to examine racial disparities in prostate cancer incidence for Texas over the period 1995–1998 and subsequent mortality through the year 2001. Incidence, mortality, treatment, and risk factors for survival were examined. It was found that non-Hispanic blacks have higher incidence and mortality from prostate cancer than non-Hispanic whites, and that Hispanics and non-Hispanic Asians are roughly similar to non-Hispanic whites in cancer survival. The incidence rates in non-Hispanic whites were spread more evenly across the age spectrum compared to other racial and ethnic groups. Non-Hispanic blacks were more often diagnosed at a higher stage of disease. All racial and ethnic groups in the Registry had lower death rates from non-prostate cancer causes than non-Hispanic whites. Age, stage and grade all conferred about the same relative risks of all-cause and prostate cancer survival within each racial and ethnic group examined. Radiation treatment for non-Hispanic blacks and Hispanics did not confer a relative risk of survival statistically significantly different from surgery, whereas it conferred greater survival in non-Hispanic whites. However, non-Hispanic blacks were statistically significantly less likely to have received radiation treatment, while controlling for age, stage, and grade. Among only those who died of prostate cancer, non-Hispanic blacks were less likely to have received radiation than were non-Hispanic whites, whereas among those who had not died, non-Hispanic blacks were more likely to have received this treatment. Hispanics were less likely to have received radiation whether they died from prostate cancer or not. All racial and ethnic groups were less likely than Non-Hispanic whites to have received surgery. Non-Hispanic blacks and Hispanics were more likely than non-Hispanic whites to have received hormonal treatment. The findings are interpreted with caution with regard to the limitations of data quality and missing information. Results are discussed in the context of previous work, and public health implications are pondered. This study confirms some earlier findings, identifies treatment as one possible source of disparity in prostate cancer mortality, and contributes to understanding the epidemiology of prostate cancer in Hispanics. ^
Resumo:
Oligodendrogliomas are primary neoplasms of the central nervous system (CNS). One of the most common and characteristic chromosomal abnormalities observed in oligodendroglioma is allelic loss of 1p (Reifenberger et al., 1994; Bello et al., 1995). Since 1p loss has been reported for both well-differentiated and anaplastic oligodendroglioma, it is believed to occur early in tumor development (Bello et al., 1995). This allelic loss also has clinical significance, for oligodendroglioma patients with 1p loss generally respond significantly better to combination chemotherapy and have longer average survival than do oligodendroglioma patients without 1p loss (Cairncross et al., 1998). To date, no genes on 1p have been implicated as essential to the development or treatment response of oligodendroglioma. In order to localize and/or identify a gene involved in oligodendroglioma development, I tested 170 oligodendrogliomas for deletions of 1p and tested 26 tumors for differential expression of genes in the region of 1p36. Evidence obtained from these methods implicated two genes, SHREW1 and the gene encoding DNA fragmentation factor beta (DFFB). The function for the SHREW1 locus is currently not well known, but preliminary data suggests that it a novel member of adherens junctions. The DFFB gene is an enhancer for apoptosis. Thus, both SHREW1 and DFFB may be candidates for an oligodendroglioma tumor suppressor. Mutational analysis of both genes did not uncover any mutations. Future studies will evaluate other mechanisms that may be responsible for inactivation of these genes in oligodendrogliomas. ^
Resumo:
The importance of IGF-1/IGF-1R signaling is evident in human cancers including breast, colon, prostate, and lung which have been shown to overexpress IGF-1. Also, serum levels of IGF-1 have been identified as a risk factor for these cancers. IGF-1 has been primarily shown to mediate its mitogenic effects through signaling pathways such as MAPK and PI3K/Akt. In this regard, BK5.IGF-1 transgenic mice were generated and these mice displayed hyperplasia and hyperkeratosis in the epidermis. In addition, these mice were also found to have elevated MAPK, PI3K, and Akt activities. Furthermore, overexpression of IGF-1 in epidermis can act as a tumor promoter. BK5.IGF-1 transgenic mice developed papillomas after initiation with DMBA without further treatment with a tumor promoter such as TPA. Previous data has also shown that inhibition of the PI3K/Akt signaling pathway by the inhibitor LY294002 was able to reduce the number of tumors formed by IGF-1 mediated tumor promotion. The current studies presented demonstrate that Akt may be the critical effector molecule in IGF-1/IGF-1R mediated tumor promotion. We have found that inhibition of PI3K/Akt by LY294002 inhibits cell cycle components, particularly those associated with G1 to S phase transition including Cyclin D1, Cyclin E, E2F1, and E2F4, that are elevated in epidermis of BK5.IGF-1 transgenic mice. We have also demonstrated that Akt activation may be a central theme in early tumor promotion. In this regard, treatment with diverse tumor promoters such as TPA, okadaic acid, chrysarobin, and UVB was shown to activate epidermal Akt and its downstream signaling pathways after a single treatment. Furthermore, overexpression of Akt targeted to the basal cells of the epidermis led to hyperplasia and increased labeling index as determined by BrdU staining. These mice also had constitutively elevated levels of cell cycle components, particularly Cyclin D1, Cyclin E, E2F1, E2F4, and Mdm-2. These mice developed skin tumors following initiation with DMBA and were hypersensitive to the tumor promoting effects of TPA. Collectively, these studies provide evidence that Akt activation plays an important role in the process of mouse skin tumor promotion. ^
Resumo:
14-3-3 is a family of highly conserved and ubiquitously expressed proteins in eukaryotic organisms. 14-3-3 isoforms bind in a phospho-serine/threonine-dependent manner to a host of proteins involved in essential cellular processes including cell cycle, signal transduction and apoptosis. We fortuitously discovered 14-3-3 zeta overexpression in many human primary cancers, such as breast, lung, and sarcoma, and in a majority of cancer cell lines. To determine 14-3-3 zeta involvement in breast cancer progression, we used immunohistochemical analysis to examine 14-3-3 zeta expression in human primary invasive breast carcinomas. High 14-3-3 zeta expression was significantly correlated with poor prognosis of breast cancer patients. Increased expression of 14-3-3 zeta was also significantly correlated with elevated PKB/Akt activation in patient samples. Thus, 14-3-3 zeta is a marker of poor prognosis in breast cancers. Furthermore, up-regulation of 14-3-3 zeta enhanced malignant transformation of cancer cells in vitro. ^ To determine the biological significance of 14-3-3 zeta in human cancers, small interfering RNAs (siRNA) were used to specifically block 14-3-3 zeta expression in cancer cells. 14-3-3 zeta siRNA inhibited cellular proliferation by inducing a G1 arrest associated with up-regulation of p27 KIP1 and p21CIP1 cyclin dependent kinase inhibitors. Reduced 14-3-3 zeta inhibited PKB/Akt activation while stimulating the p38 signaling pathway. Silencing 14-3-3 zeta expression also increased stress-induced apoptosis by caspase activation. Notably, 14-3-3 zeta siRNA inhibited transformation related properties of breast cancer cells in vitro and inhibited tumor progression of breast cancer cells in vivo. 14-3-3 zeta may be a key regulatory factor controlling multiple signaling pathways leading to tumor progression. ^ The data indicate 14-3-3 zeta is a major regulator of cell growth and apoptosis and may play a critical role in the development of multiple cancer types. Hence, blocking 14-3-3 zeta may be a promising therapeutic approach for numerous cancers. ^
Resumo:
Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^
Resumo:
ErbB2 is an excellent target for cancer therapies because its overexpression was found in about 30% of breast cancers and correlated with poor prognosis of the patients. Unfortunately, current therapies for ErbB2-positive breast cancers remain unsatisfying due to side effects and resistance, and new therapies for ErbB2 overexpressing breast cancers are needed. Peptide/protein therapy using cell-penetrating peptides (CPPs) as carriers is promising because the internalization is highly efficient and the cargos can be bioactive. The major obstacle in using CPPs for therapy is their lack of specificity. We sought to develop a peptide carrier specifically introducing therapeutics to ErbB2-overexpressing breast cancer cells. By modifying the TAT-derived CPP, and attaching anti-HER2/neu peptide mimetic (AHNP), we developed the peptide carrier (P3-AHNP) specifically targeted ErbB2-overexpressing breast cancers in vitro and in vivo. A STAT3 SH2 domain-binding peptide conjugated to this peptide carrier (P3-AHNP-STAT3BP) was delivered preferentially into ErbB2-overexpressing breast cancer cells in vitro and in vivo. P3-AHNP-STAT3BP inhibited growth and induced apoptosis in vitro, with ErbB2-overexpressing 435.eB cells being more sensitive than the ErbB2-lowexpressing MDA-MB-435 cells. P3-AHNP-STAT3BP preferentially accumulated and inhibited growth in 435.eB xenografts, comparing with MDA-MB-435 xenografts or normal tissues with low levels of ErbB2. This ErbB2-targeting peptide delivery system provided the basis for future development of novel cancer target-specific treatments with low toxicity to normal cells. ^ Another urgent issue in treating ErbB2-positive breast cancers is trastuzumab resistance. Trastuzumab is the only FDA-approved ErbB2-targeting antibody for treatment of metastatic breast cancers overexpressing ErbB2, and has remarkable therapeutic efficacy in certain patients. The overall trastuzumab response rate, however, is limited, and understanding the mechanisms of trastuzumab resistance is needed to overcome this problem. We report that PTEN activation contributes to trastuzumab's anti-tumor activity. Trastuzumab treatment quickly inactivated Src, which reduced PTEN tyrosine phosphorylation, increased PTEN membrane localization and its phosphatase activity in cancer cells. Reducing PTEN expression in breast cancer cells by antisense oligonucleotides conferred trastuzumab resistance in vitro and in vivo. Importantly, PI3K inhibitors sensitized PTEN-deficient breast cancers to the growth inhibition by trastuzumab in vitro and in vivo, suggesting that combination therapies with PI3K inhibitors plus trastuzumab could overcome trastuzumab resistance. ^
Resumo:
Bortezomib (VELCADE™, formerly known as PS-341) is a selective and potent inhibitor of the proteasome that was recently FDA-approved for the treatment of multiple myeloma. Despite its success in multiple myeloma and progression into clinical trials for other malignancies, bortezomib's exact mechanism of action remains undefined. The major objective of this study was to evaluate the anticancer activity of this drug using in vitro and in vivo pancreatic cancer models and determine whether bortezomib-induced apoptosis occurs via induction of endoplasmic reticular (ER) stress. The investigation revealed that bortezomib inhibited tumor cell proliferation via abrogation of cdk activity and induced apoptosis in pancreatic cancer cell lines. I hypothesized that bortezomib-induced apoptosis was triggered by a large accumulation ubiquitin-conjugated proteins that resulted in ER stress. My data demonstrated that bortezomib induced a unique type of ER stress in that it inhibited PKR-like ER kinase (PERK) and subsequent phosphorylation of eukaryotic initiation factor 2α (eif2α), a key event in translational suppression. The combined effects of proteasome inhibition and the failure to attenuate translation resulted in an accumulation of aggregated proteins (proteotoxicity), JNK activation, cytochrome c release, caspase-3 activation, and DNA fragmentation. Bortezomib also enhanced apoptosis induced by other agents that stimulated the unfolded protein response (UPR), demonstrating that translational suppression is a critical cytoprotective mechanism during ER stress. Tumor cells attempt to survive bortezomib-induced ER stress by sequestering aggregated proteins into large structures, termed aggresomes. Since histone deacetylase 6 (HDAC6) is essential for aggresome formation, tumor cells may be sensitized to bortezomib-induced apoptosis by blocking HDAC function. My results demonstrated that HDAC inhibitors disrupted aggresome formation and synergized with bortezomib to induce apoptosis in pancreatic cancer or multiple myeloma cells in vitro and in orthotopic pancreatic tumors in vivo. Taken together, my data establish a mechanistic link between bortezomib-induced aggresome formation, ER stress, and apoptosis and identify a novel therapeutic strategy for the treatment of pancreatic cancer and other hematologic and solid malignancies. ^
Resumo:
Background. Nosocomial invasive aspergillosis (a highly fatal disease) is an increasing problem for immunocompromised patients. Aspergillus spp. can be transmitted via air (most commonly) and by water. ^ The hypothesis for this prospective study was that there is an association between patient occupancy, housekeeping practices, patients, visitors, and Aspergillus spp. loading. Rooms were sampled as not terminally cleaned (dirty) and terminally cleaned (clean). The secondary hypothesis was that Aspergillus spp. positive samples collected from more than one sampling location within the same patient room represent the same isolate. ^ Methods. Between April and October 2004, 2873 environmental samples (713 air, 607 water, 1256 surface and 297 spore traps) were collected in and around 209 “clean” and “dirty” patient rooms in a large cancer center hospital. Water sources included aerosolized water from patient room showerheads, sinks, drains, and toilets. Bioaerosol samples were from the patient room and from the running shower, flushing toilet, and outside the building. The surface samples included sink and shower drains, showerheads, and air grills. Aspergillus spp. positive samples were also sent for PCR, molecular typing (n = 89). ^ Results. All water samples were negative for Aspergillus spp. There were a total of 130 positive culturable samples (5.1%). The predominant species found was Aspergillus niger. Of the positive culturable samples, 106 (14.9%) were air and 24 (3.8%) were surface. There were 147 spore trap samples, and 49.5% were positive for Aspergillus/Penicillum spp. Of the culturable positive samples sent for PCR, 16 were indistinguishable matches. There was no significant relationship between air and water samples and positive samples from the same room. ^ Conclusion. Primarily patients, visitors and staff bring the Aspergillus spp. into the hospital. The high number of A. niger samples suggests the spores are entering the hospital from outdoors. Eliminating the materials brought to the patient floors from the outside, requiring employees, staff, and visitors to wear cover up over their street clothes, and improved cleaning procedures could further reduce positive samples. Mold strains change frequently; it is probably more significant to understand pathogenicity of viable spores than to commit resources on molecular strain testing on environmental samples alone. ^
Resumo:
A retrospective cohort study was conducted among 1542 patients diagnosed with CLL between 1970 and 2001 at the M. D. Anderson Cancer Center (MDACC). Changes in clinical characteristics and the impact of CLL on life expectancy were assessed across three decades (1970–2001) and the role of clinical factors on prognosis of CLL were evaluated among patients diagnosed between 1985 and 2001 using Kaplan-Meier and Cox proportional hazards method. Among 1485 CLL patients diagnosed from 1970 to 2001, patients in the recent cohort (1985–2001) were diagnosed at a younger age and an earlier stage compared to the earliest cohort (1970–1984). There was a 44% reduction in mortality among patients diagnosed in 1985–1995 compared to those diagnosed in 1970–1984 after adjusting for age, sex and Rai stage among patients who ever received treatment. There was an overall 11 years (5 years for stage 0) loss of life expectancy among 1485 patients compared with the expected life expectancy based on the age-, sex- and race-matched US general population, with a 43% decrease in the 10-year survival rate. Abnormal cytogenetics was associated with shorter progression-free (PF) survival after adjusting for age, sex, Rai stage and beta-2 microglobulin (beta-2M); whereas, older age, abnormal cytogenetics and a higher beta-2M level were adverse predictors for overall survival. No increased risk of second cancer overall was observed, however, patients who received treatment for CLL had an elevated risk of developing AML and HD. Two out of three patients who developed AML were treated with alkylating agents. In conclusion, CLL patients had improved survival over time. The identification of clinical predictors of PF/overall survival has important clinical significance. Close surveillance of the development of second cancer is critical to improve the quality of life of long-term survivors. ^
Resumo:
Melanoma patients with metastases have a very low survival rate and limited treatment options. Therefore, the targeting of melanoma cells when they begin to invade and metastasize would be beneficial. A specific adhesion molecule that is upregulated at the vertical growth phase is the melanoma cell adhesion molecule (MCAM/MUC18). MUC18 is expressed in late primary and metastatic melanoma with little or no expression on normal melanocytes. MUC18 has been demonstrated to have a role in the progression and metastasis of human melanoma. We utilized the alphavirus-based DNA plasmid, SINCp, encoding full length human MUC18 for vaccination against B16F10 murine melanoma cells expressing human MUC18. The alphavirus-based DNA plasmid leads to the expression of large quantities of heterologous protein as well as danger signals due to dsRNA intermediates produced during viral replication. In a preventative primary tumor model and an experimental tumor model, mice vaccinated against human MUC18 had decreased tumor incidence and reduced lung metastases when challenged with B16F10 murine melanoma cells expressing human MUC18. In a therapeutic tumor model, vaccination against human MUC18 reduced the tumor burden in mice with pre-existing lung metastases but did not have a significant effect on therapeutic vaccination in a primary tumor model. We next cloned murine MUC18 into SINCp for use in determining the efficacy of vaccination against murine MUC18 in a syngeneic animal model. Mice were vaccinated and challenged in a primary tumor and experimental metastasis model. In both models, vaccination significantly reduced tumor incidence and lung metastases. Humoral and cell-mediated responses were then determined. Flow cytometry and immunohistochemistry showed that specific antibodies were developed from vaccination against both human and murine MUC18. IgG2a antibody isotype was also developed indicating a Th1 type response. ELISPOT results showed that mice vaccinated against human MUC18 created a specific T cell response to targets expressing human MUC18. Mice vaccinated against murine MUC18 raised specific effector cells against target cells expressing murine MUC18 in a cell killing assay. These results indicate that vaccination against MUC18 developed specific immune responses against MUC18 and were effective in controlling tumor growth in melanoma expressing MUC18. ^
Resumo:
Background. The rise in survival rates along with more detailed follow-up using sophisticated imaging studies among non-small lung cancer (NSCLC) patients has led to an increased risk of second primary tumors (SPT) among these cases. Population and hospital based studies of lung cancer patients treated between 1974 and 1996 have found an increasing risk over time for the development of all cancers following treatment of non-small cell lung cancer (NSCLC). During this time the primary modalities for treatment were surgery alone, radiation alone, surgery and post-operative radiation therapy, or combinations of chemotherapy and radiation (sequentially or concurrently). There is limited information in the literature about the impact of treatment modalities on the development of second primary tumors in these patients. ^ Purpose. To investigate the impact of treatment modalities on the risk of second primary tumors in patients receiving treatment with curative intent for non-metastatic (Stage I–III) non-small cell lung cancer (NSCLC). ^ Methods. The hospital records of 1,095 NSCLC patients who were diagnosed between 1980–2001 and received treatment with curative intent at M.D. Anderson Cancer Center with surgery alone, radiation alone (with a minimum total radiation dose of at least 45Gy), surgery and post-operative radiation therapy, radiation therapy in combination with chemotherapy or surgery in combination with chemotherapy and radiation were retrospectively reviewed. A second primary malignancy was be defined as any tumor histologically different from the initial cancer, or of another anatomic location, or a tumor of the same location and histology as the initial tumor having an interval between cancers of at least five years. Only primary tumors occurring after treatment for NSCLC will qualified as second primary tumors for this study. ^ Results. The incidence of second primary tumor was 3.3%/year and the rate increased over time following treatment. The type of NSCLC treatment was not found to have a striking effect upon SPT development. Increased rates were observed in the radiation only and chemotherapy plus radiation treatment groups; but, these increases did not exceed expected random variation. Higher radiation treatment dose, patient age and weight loss prior to index NSCLC treatment were associated with higher SPT development. ^
Resumo:
Cancer is the most devastating disease that has tremendous impacts on public health. Many efforts have been devoted to fighting cancer through either translational or basic researches for years. Nowadays, it emerges the importance to converge these two research directions and complement to each other for battling with cancer. Thus, our study aims at both translational and basic research directions. The first goal of our study is focus on translational research to search for new agents targeting prevention and therapy of advanced prostate cancer. Hormone refractory prostate cancer is incurable and lethal. Androgen receptor (AR) mediates androgen's effect not only on the tumor initiation but also plays the major role in the relapse transition of prostate cancer. Here we demonstrate that emodin, a natural compound, can directly target AR to suppress prostate cancer cell growth in vitro and prolong the survival of C3(1)/SV40 transgenic mice in vivo. Emodin treatment resulted in repressing androgen-dependent transactivation of AR by inhibiting AR nuclear translocation. Emodin decreased the association of AR and heat shock protein 90 and increased the association of AR and MDM2, which in turn, induces AR degradation through a proteasome-mediated pathway in a ligand independent manner. Our work indicates a new mechanism for the emodin-mediated anticancer effect and justifies further investigation of emodin as a therapeutic and preventive agent for prostate cancer. The second goal of our study is try to elucidate the fundamental tumor biology of cancer progression then provide the rationale to develop more efficient therapeutic strategy. Enhancer of zeste homologue 2 (EZH2) plays an important role in many biological processes through its intrinsic methyltransferase activity to trimethylate lysine 27 in histone H3. Although overexpression of EZH2 has been shown to be involved in cancer progression, the detailed mechanisms are elusive. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding the binding to its substrate histone H3, resulting in a decrease of lysine 27 trimethylation and derepression of silenced genes, thus promotes cell proliferation and tumorigenicity. Our results also show that histone methylation is not permanent but regulated in a dynamic manner and that the Akt signaling pathway is involved in the regulation of this epigenetic modification through phosphorylation of EZH2, thus contributing to oncogenic processes. ^
Resumo:
Nuclear imaging is used for non-invasive detection, staging and therapeutic monitoring of tumors through the use of radiolabeled probes. Generally, these probes are used for applications in which they provide passive, non-specific information about the target. Therefore, there is a significant need for actively-targeted radioactive probes to provide functional information about the site of interest. This study examined endostatin, an endogenous inhibitor of tumor angiogenesis, which has affinity for tumor vasculature. The major objective of this study was to develop radiolabeled analogues of endostatin through novel chemical and radiochemical syntheses, and to determine their usefulness for tumor imaging using in vitro and in vivo models of vascular, mammary and prostate tumor cells. I hypothesize that this binding will allow for a non-invasive approach to detection of tumor angiogenesis, and such detection can be used for therapeutic monitoring to determine the efficacy of anti-angiogenic therapy. ^ The data showed that endostatin could be successfully conjugated to the bifunctional chelator ethylenedicysteine (EC), and radiolabeled with technetium-99m and gallium-68, providing a unique opportunity to use a single precursor for both nuclear imaging modalities: 99mTc for single photon emission computed tomography and 68Ga for positron emission tomography, respectively. Both radiolabeled analogues showed increased binding as a function of time in human umbilical vein endothelial cells and mammary and prostate tumor cells. Binding could be blocked in a dose-dependent manner by unlabeled endostatin implying the presence of endostatin receptors on both vascular and tumor cells. Animal biodistribution studies demonstrated that both analogues were stable in vivo, showed typical reticuloendothelial and renal excretion and produced favorable absorbed organ doses for application in humans. The imaging data provide evidence that the compounds quantitate tumor volumes with clinically-useful tumor-to-nontumor ratios, and can be used for treatment follow-up to depict changes occurring at the vascular and cellular levels. ^ Two novel endostatin analogues were developed and demonstrated interaction with vascular and tumor cells. Both can be incorporated into existing nuclear imaging platforms allowing for potential wide-spread clinical benefit as well as serving as a diagnostic tool for elucidation of the mechanism of action of endostatin. ^
Resumo:
The tumor suppressor p16 is a negative regulator of the cell cycle, and acts by preventing the phosphorylation of RB, which in turn prevents the progression from G1 to S phase of the cell cycle. In addition to its role in the cell cycle, p16 may also be able to induce apoptosis in some tumors. Ewing's sarcoma, a pediatric cancer of the bone and soft tissue, was used to study the ability of p16 to induce apoptosis due to the fact that p16 is often deleted in Ewing's sarcoma tumors and may play a role in the oncogenesis or progression of this disease. The purpose of these studies was to determine whether introduction of p16 into Ewing's sarcoma cells would induce apoptosis. We infected the Ewing's sarcoma cell line TC71, which does not express p16, with adenovirus- p16 (Ad-p16). Ad-p16 infection led to the production of functional p16 as measured by the induction of G1 arrest. Ad-p16 infection induced as much as a 100% increase in G1 arrest compared to untreated cells. As measured by propidium iodide (PI) and Annexin V staining, Ad-p16 was able to induce apoptosis to levels 20–30 fold higher than controls. Furthermore, Ad-p16 infection led to loss of RB protein before apoptosis could be detected. The loss of RB protein was due to post-translational degradation of RB, which was inhibited by the addition of the proteasome inhibitors PS-341 and NPI-0052. Downregulation of RB with si-RNA sensitized cells to Ad-p16-induced apoptosis, indicating that RB protects from apoptosis in this model. This study shows that p16 leads to the degradation of RB by the ubiquitin/proteasome pathway, and that this degradation may be important for the induction of apoptosis. Given that RB may protect from apoptosis in some tumors, apoptosis-inducing therapies may be enhanced in tumors which have lost RB expression, or in which RB is artificially inactivated. ^